Submittal Package

KOHLER_®

TABLE OF CONTENTS

Section	Sub-Section	Literature
Quote		
Model 500REOZJC Spec Sheets		
Specification Sheet	Controller	G6-161
Specification Sheet	Circuit Breaker	G6-88
Specification Sheet	Circuit Breaker	Circuit Breaker Trip Curves
Specification Sheet	Circuit Breaker	P_R Frame Breaker
Specification Sheet	Battery Charger	G6-146
Specification Sheet	Weather/ Sound Enclosure Packaging	Enclosure Package
Specification Sheet	Engine Block Heater	G6-170
Specification Sheet	Voltage Regulator	Voltage Regulator
Alternator Data		
	Alternator Data Sheet	5M4027
Sound Data		
Sourio Dala	Sound Data Sheet	Sound Data
	Sound Data Sheet	Sound Data
Cooling Data		
	Cooling Systems Data Sheet	Cooling Data
Exhaust System Data		
	Exhaust System Data	Exhaust System Data
	Exhaust System Data	Exhaust System Data
Freisciene Data		
Emissions Data		
	Emissions Data	Emissions Data
	EPA Certificate	EPA Certificate
DimensionalDrawings		
	Generator	ADV-9193
	Accessories	ADV-8527
	Enclosure	ADV-9189
	Subbase Tank	ADV-8528

WiringSchematicDiagrams

	Controller Schematic Diagram	ADV-8000
	Controller Wiring Diagram	GM77987
	Enclosure Wiring	ADV-7035
	Voltage Diagram	ADV-5875
Misc		
	Battery	244578
	Battery Charger	GM87448
	Battery Charger Assembly	GM94922
	Block Heater	GM75809
	Block Heater	GM76113
	Circuit Breaker	GM24181
	Flexible Fuel Line	273614-CMP
Warranty		
	Warranty	TP-5374
	Warranty	TP-5561
Certification		
	ISO9001 Certificate	G15-152
	Wind Load	G18-529
	Prototype Test Certificate	G18-511
	Prototype Test Certificate	G18-56
Pre-Startup Checklist		

Pre-Startup Checklist

PreStartUpCheckList

Generator

Kohler Model: 500REOZJC

This diesel generator set equipped with a 5M4027 alternator operating at 277/480 volts is rated for 505 kW/631 kVA. Output amperage: 759

Standard Features:

• Kohler Co. provides one-source responsibility for the • The pilot-excited, permanent-magnet (PM) alternator generating system and accessories.

 Approved for use with certified renewable Hydrotreated Vegetable Oil (HVO) / Renewable Diesel (RD) fuels compliant with EN15940/ASTM D975.

· The generator set and its components are prototypetested, factory-built, and production-tested.

- The 60 Hz generator set offers a UL 2200 listings.
- The generator set accepts rated load in one step.

• The 60 Hz emergency generator set meets NFPA 110, Level 1, when equipped with the necessary accessories and installed per NFPA standards.

 A one-year limited warranty covers all systems and components. Two-and five-year extended warranties are also available.

 Tier 2 EPA-certified for Stationary Emergency Applications

- Alternator Protection
- Battery Rack and Cables

 Customer Connection (standard with Decision-Maker 6000 controller only)

- Local Emergency Stop Switch
- Oil Drain Extension
- Operation and Installation Literature

Other Features:

· Kohler designed controllers for guaranteed system integration and remote communication.

· The low coolant level shutdown prevents overheating (standard on radiator models only).Integral vibration isolation eliminates the need for under-unit vibration spring isolators.

 An electronic, isochronous governor delivers precise frequency regulation.

 Mount up to four circuit breakers to allow circuit protection of selected priority loads.

Alternator Features:

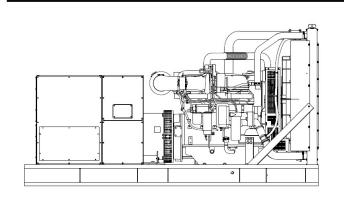
provides superior short-circuit capability.

· The brushless, rotating-field alternator has broad range reconnectability.

Qty Description 500REOZJC Generator System

3

500REOZJC Generator Set


Includes the following:

Literature Languages Approvals and Listings Engine Nameplate Rating Voltage Alternator Cooling System Skid and Mounting Air Intake Controller Enclosure Type **Enclosure Material** Fuel Tank Type Fuel Runtime (Approx.) Subbase Fuel Tank Capacity Starting Aids, Installed Electrical Accy., Installed Electrical Accy., Installed Electrical Accy., Installed Electrical Accy., Installed Rating, LCB 1 Right Amps, LCB 1 Right Trip Type, LCB 1 Right LCB 1 Right Interrupt Rating Frame, LCB 1 Right Position, LCB 1 Right Fuel Lines, Installed Exceeds LTL Shipping Height Miscellaneous Accy, Installed Warranty Testing, Additional Literature, General Maint-500REOZJC English UL2200 Listing 500REOZJC,24V,60HZ Standby 130C Rise 60Hz, 277/480V, Wye, 3Ph, 4W 5M4027 Unit Mounted Radiator, 50C Skid Standard Duty APM402 Sound Steel Standard 24 Hours 894 Gallons 2500W,90-120V,1Ph,w/Valves Battery, 2/12V, Wet Battery Charger, 10A Run Relay 2 Input/5 OutputModule 100% Rated 800 Electronic, LSI 35kA at 480V PG 1 Flexible Fuel Lines Add'l Shipping Charge Accepted Coolant in Genset 5 Year Comprehensive Power Factor Test, 0.8, 3Ph Only

Spec Sheets

KOHLER

Standard Features

· Kohler Co. provides one-source responsibility for the generating system and accessories.

Approved for use with certified renewable Hydrotreated Vegetable Oil (HVO) / Renewable Diesel (RD) fuels compliant with EN15940/ASTM D975.

 The generator set and its components are prototype-tested, factory-built, and production-tested.

- The 60 Hz generator set offers a UL 2200 listings.
- The generator set accepts rated load in one step.
- The 60 Hz emergency generator set meets NFPA 110, Level

1, when equipped with the necessary accessories and installed per NFPA standards.

· A one-year limited warranty covers all systems and components. Two-and five-year extended warranties are also available.

- Tier 2 EPA-certified for Stationary Emergency Applications
- Alternator Protection •
- Battery Rack and Cables
- Customer Connection (standard with Decision-Maker 6000 controller only)
- Local Emergency Stop Switch
- **Oil Drain Extension**
- **Operation and Installation Literature**

Alternator Features

- The pilot-excited, permanent-magnet (PM) alternator provides superior short-circuit capability.
- The brushless, rotating-field alternator has broad range reconnectability.

Other Features

 Kohler designed controllers for guaranteed system integration and remote communication.

 The low coolant level shutdown prevents overheating (standard on radiator models only). Integral vibration isolation eliminates the need for under-unit vibration spring isolators.

· An electronic, isochronous governor delivers precise frequency regulation.

 Mount up to four circuit breakers to allow circuit protection of selected priority loads.

Chandley 1200 Dias Datings

Generator Set Rating

				2		ise Ralings
Alternator	Voltage	Ph	Hz	Peak kVA	kW/kVA	Amps
5M4027	277/480	3	60	2200	505/631	759

RATINGS: All three-phase units are rated at 0.8 power factor. All single-phase units are rated at 1.0 power factor.

Standby Ratings: The standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Prime Power Ratings: At varying load, the number of generator set operating hours is unlimited. A 10% overload capacity is available for one hour in twelve.

Ratings are in accordance with ISO-8528-1 and ISO-3046-1. For limited running time and continuous ratings, consult the factory.

Alternator Specifications

Specifications	Alternator
Alternator manufacturer	Kohler
Туре	4-Pole, Rotating-Field
Exciter type	Brushless, Permanent-Magnet, Pilot Exciter
Leads, quantity	10/12, Reconnectable
Voltage regulator	Solid State, Volts/Hz
Insulation	NEMA MG1
Insulation: Material	Class H, Synthetic, Nonhydroscopic
Insulation: Temperature Rise	130 ° C, 150 ° C Standby
Coupling	Flexible Disc
Amortisseur windings	Full
Rotor balancing (50Hz)	125%
Rotor balancing (60Hz)	125%
Voltage regulation, no-load to full-load RMS	Controller Dependent
One-Step Load Acceptance	100% of rating
Unbalanced load capability	100% of Rated Standby Current

• NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.

• Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.

• Sustained short-circuit current enabling down stream circuit breakers to trip without collapsing the alternator field.

• Self-ventilated and dripproof construction.

Superior voltage waveform from a two-thirds pitch stator and skewed rotor.

• Brushless alternator with brushless pilot exciter for excellent load response.

Engine

Engine Specification		
Engine Manufacturer	John Deere	
Engine Model	6135HFG75	
Engine: type	Turbocharged, Charge Air-Cooled	
Cylinder arrangement	6, Inline	
Displacement, L (cu. in.)	13.5 (824)	
Bore and stroke, mm (in.)	132 x 165 (5.2 x 6.5)	
Compression ratio	16.0:1	
Piston speed, m/min. (ft./min.)	594 (1950)	
Rated rpm	1800	
Max. power at rated rpm, kWm (BHP)	563 (755)	
Crankshaft material	Forged Steel	
Valve (exhaust) material Intake	Nickel-Chromium Head	
Valve (exhaust) material	Chromium-Silicone Stem	
Governor: type, make/model	JDEC Electronic L15	
Frequency regulation, no-load to-full load	Isochronous	
Frequency regulation, steady state	± 0.25%	
Frequency	Fixed	

Dry

Air cleaner type, all models

Model: 500REOZJC, continued

Exhaust

Exhaust System	
Exhaust Manifold Type	Dry
Exhaust flow at rated kW, m3/min. (cfm)	97.2 (3433)
Exhaust temperature at rated kW, dry exhaust, $^\circ$ C ($^\circ$ F)	524 (975)
Maximum allowable back pressure, kPa (in. Hg)	Min. 4 (1.2) Max. 9.8 (2.9)
Exh. outlet size at eng. hookup, mm (in.)	See ADV Drawing

Engine Electrical

Engine	Electrical	System
--------	------------	--------

Battery charging alternator: Ground (negative/positive)	Negative
Battery charging alternator: Volts (DC)	24
Battery charging alternator: Ampere rating	60
Starter motor rated voltage (DC)	24
Battery, recommended cold cranking amps (CCA): Qty., CCA rating each	Two, 925
Battery voltage (DC)	12

Fuel

Fuel System		
Fuel type	Diesel	
Fuel supply line, min. ID, mm (in.)	13 (0.50)	
Fuel return line, min. ID, mm (in.)	10 (0.38)	
Max. lift, fuel pump: type, m (ft.)	Electronic 2.1 (6.8)	
Max. fuel flow, Lph (gph)	180.6 (47.7)	
Max. return line restriction, kPa (in. Hg)	35 (10.3)	
Fuel prime pump	Electronic	
Fuel Filter Secondary	2 Microns @ 98% Efficiency	
Fuel Filter Primary	10 Microns	
Fuel Filter Water Separator	Yes	
Recommended fuel	#2 Diesel	

Lubrication

Lubrication SystemTypeFull PressureOil pan capacity, L (qt.)40.0 (42.3)Oil pan capacity with filter, L (qt.)42.0 (44.4)Oil filter: quantity, type1, CartridgeOil coolerWater-Cooled

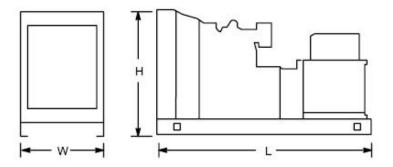
Model: 500REOZJC, continued

Cooling

Radiator System		
Ambient temperature, °C (°F)	50 (122)	
Engine jacket water capacity, L (gal.)	18 (4.8)	
Radiator system capacity, including engine, L (gal.)	67.2 (17.8)	
Engine jacket water flow, Lpm (gpm)	400 (106)	
Heat rejected to cooling water at rated kW, dry exhaust, kW (Btu/min.)	209 (11896)	
Heat rejected to charge air cooling water at rated kW, dry exhaust, Kw Btu/min.	116 (6603)	
Water pump type	Centrifugal	
Fan diameter, including blades, mm (in.)	965 (38)	
Fan, kWm (HP)	18 (24)	
Max. restriction of cooling air, intake and discharge side of radiator, kPA (in. H20)	A 0.125 (0.5)	
* Enclosure with internal silencer reduces ambient temperature capability by 5 ° C (9 ° F).		

Operation Requirements

Air Requirements		
Radiator-cooled cooling air, m3/min. (scfm) *	435 (15400)	
Cooling air required for generator set when equipped with city water cooling or remote radiator, based on 14 $^{\circ}$ C (25 $^{\circ}$ F) rise, m3/min. rise and ambient temp. of 29 $^{\circ}$ C (85 $^{\circ}$ F) m3/min. (cfm)	279 (9867)	
Combustion air, m3/min. (cfm)	38 (1342)	
Heat rejected to ambient air: Engine, kW (Btu/min.)	38 (2163)	
Heat rejected to ambient air: Alternator, kW (Btu/min.)	40 (2277)	
*Air density = 1.20 kg/m3 (0.075 lbm/ft3)		


Fuel Consumption

	Rating
Standby Fuel Consumption at 100% load	134.5 Lph (35.5 gph)
Standby Fuel Consumption at 75% load	104.6 Lph (27.6 gph)
Standby Fuel Consumption at 50% load	75.3 Lph (19.9 gph)
Standby Fuel Consumption at 25% load	38.8 (10.2)
Continuous Fuel Consumption at 0% load	Fuel consumption is up to 4% higher when using HVO/RD than #2 ULSD.

Dimensions and Weights

Dim Weight Spec	Dim Weight Value
Fuel	Diesel
Engine Manufacturer	John Deere
Overall Size, L x W x H, mm (in.):	3630 x 1425 x 1936 (142.9 x 56.1 x 76.2)
Weight (radiator model), wet, kg (lb.):	3883 (8560)

Model: 500REOZJC, continued

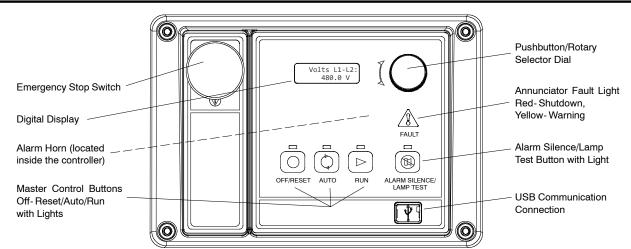
NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

Generator Set Controller

APM402

Kohler® APM402 Controller

General Description and Function


The APM402 generator set controller provides advanced control, system monitoring, and system diagnostics for optimum performance.

The APM402 controller meets NFPA 110, Level 1 when equipped with the necessary accessories and installed per NFPA standards.

The APM402 controller uses a patented hybrid voltage regulator and unique software logic to manage alternator thermal overload protection features normally requiring additional hardware. Additional features include:

- A digital display and pushbutton/rotary selector dial provide easy local access to data.
- Measurements selectable in metric or English units.
- The controller can communicate directly with a personal computer via a network or serial configuration using SiteTech[™] or Monitor III software.
- The controller supports Modbus[®] protocol. Use with serial bus or Ethernet networks. (Ethernet requires an external Modbus[®]/Ethernet converter module.)
- Scrolling display shows critical data at a glance.
- Digital display of power metering (kW and kVA).
- Integrated hybrid voltage regulator providing ±0.5% regulation.
- Built-in alternator thermal overload protection.

Modbus® is a registered trademark of Schneider Electric.

User Interface Controls and Components

- Emergency stop switch
- Backlit LCD digital display with two lines of 12 characters (see User Interface Displays for menus)
- Alarm horn indicates generator set shutdown and warning faults
- Environmentally sealed membrane keypad with three master control
- buttons with lights
- Off/Reset (red)
- Auto (green)
- Run (yellow) 0
- Pushbutton/rotary selector dial for menu navigation
- Rotate dial to access main menus
- Push dial and rotate to access sub menus Press dial for 3 seconds to return to top of main menu

- Annunciator fault light
 System shutdown (red)
 System warning (yellow)
 Alarm silence/lamp test button
- Alarm silence
- Lamp test
- USB and RS-485 connections Allows software upgrades
- Provides access for diagnostics
- PC communication using SiteTech™ or Monitor III software
- Dedicated user inputs
 - Remote emergency stop switch Remote 2-wire start for transfer switch
 - Auxiliary shutdown
- Integrated hybrid voltage regulator .
- Auto-resettable circuit protection mounted on circuit board.
- One relay output standard. Optional five relay output available.
- One analog and three digital inputs standard. Optional two inputs
 - available.

NFPA 110 Requirements

In order to meet NFPA 110, Level 1 requirements, the generator set controller monitors the engine/generator functions/faults shown below.

- Engine functions:
- Overcrank Low coolant temperature warning High coolant temperature warning 0
- 0
- High coolant temperature shutdown
- Low oil pressure shutdown
- 0 Low oil pressure warning
- 0 High engine speed
- 0 Low fuel (level or pressure) * Low coolant level
- EPS supplying load
- High battery voltage Low battery voltage
- General functions:
- Master switch not in auto Battery charger fault * 0
- Lamp test 0
- Contacts for local and remote common alarm Audible alarm silence button 0
- 0
- Remote emergency stop ' 0
- * Function requires optional input sensors or kits and is engine dependent, see Controller Displays as Provided by the Engine ECM.

User Interface Displays

The listing below has • denoting main menus and o denoting sub-menus.

- Overview
 - Software version
 - Active shutdowns and warnings (if any are present) 0
 - Engine run time, total hours Average voltage line-to-line Frequency 0
 - 0
 - Average current 0
 - 0
 - Coolant temperature Fuel level or pressure * 0
 - Oil pressure 0
 - 0 Battery voltage
 - Engine Metering
 - 0
 - Engine speed Oil pressure 0
 - Oll pressure
 Coolant temperature
 Battery voltage
 Generator Metering
 Total power, VA
 Total power, W

- 0
- Rated power, % Voltage, L-L and L-N for all phases 0 Current, L1, L2, L3
- Frequency
- GenSet Information
- Generator set model number 0
- 0
- Generator set serial number Controller serial number
- GenSet Run Time
- Engine run time, total hours Engine loaded, hours Number of engine starts Total energy, kWh 0
- 0
- 0
- GenSet System
- System voltage 0 0
- System frequency, 50 or 60 Hz System phase, single or three (wye or delta) Power rating, kW
- Amp rating
- 0

Input settings and status

Input settings and status

Output settings and status

- Power type, standby or prime Measurement units, metric or English (user selectable)
- Alarm silence, always or auto only (NFPA 110)

Event history (stores up to 1000 system events) Selector Switch (requires initial activation by SiteTech[™])

- Manual speed adjust
- GenSet Calibration
 - Voltage, L- L and L- N for all phases Current, L1, L2, L3
 - 0
 - Reset calibration
- Voltage Regulation Adjust voltage, ±10% Digital Inputs

Digital Outputs

Analog Inputs

Event Log

G6-161 3/21c Page 2

Controller Features

- AC Output Voltage Regulator Adjustment. The voltage adjustment provides a maximum of ±10% of the system voltage.
- Alarm Silence. The controller can be set up to silence the alarm horn only when in the AUTO mode for NFPA-110 application or Always for user convenience.
- Alternator Protection. The controller provides generator set overload and short circuit protection matched to each alternator for the particular voltage/phase configuration.
- Automatic Restart. The controller automatic restart feature initiates the start routine and recrank after a failed start attempt.
- Common Failure Relay. This relay is integrated on the controller circuit board. Contacts are rated 2 amps at 32 VDC or 0.5 amp at 120 VAC.
- Communication. Controller communication is available.
- Cyclic Cranking. The controller has programmable cyclic cranking.
- ECM Diagnostics. The controller displays engine ECM fault code descriptions to help in engine troubleshooting.
- Engine Start Aid. The starting aid feature provides control for an optional engine starting aid.
- Event Logging. The controller keeps a record (up to 1000 entries) for warning and shutdown faults. This fault information becomes a stored record of system events and can be reset.
- Historical Data Logging. Total number of generator set successful starts is recorded and displayed.
- Integrated Hybrid Voltage Regulator. The voltage regulator provides ±0.5% no-load to full-load regulation with three-phase sensing.
- Lamp Test. Press the alarm silence/lamp test button to verify functionality of the indicator lights.
- LCD Display. Adjustable contrast for improving visibility.
- Measurement Units. The controller provides selection of English or metric displays.
- Power Metering. Controller digital display provides kW and kVA.
- Programming Access (USB). Provides software upgrades and diagnostics.
- Remote Reset. The remote reset function resets faults and allows restarting of the generator set without going to the master control switch off/reset position.
- Remote Monitoring Panel. The controller is compatible with the Kohler® Remote Serial Annunciator.
- Run Time Hourmeter. The generator set run time is displayed.
- Time Delay Engine Cooldown (TDEC). The TDEC provides a time delay before the generator set shuts down.
- Time Delay Engine Start (TDES). The TDES provides a time delay before the generator set starts.
- Voltage Selection Menu. This menu provides the capability of quickly switching controller voltage calibrations. Requires initial activation using SiteTech[™] software. NOTE: Generator set output leads require voltage reconnection.

Controller Functions

The following chart shows which functions cause a warning or shutdown. All functions are available as relay outputs.

Warning causes the fault light to show yellow and sounds the alarm horn signaling an impending problem.

Shutdown causes the fault light to show red, sounds the alarm horn, and stops the generator set.

	Warning Function	Shutdown Function
Engine Functions		
Critically high fuel level *	0	
ECM communication loss		•
ECM diagnostics	•	•
Engine over speed		●†
Engine start aid active		
Engine under speed		•
Fuel tank leak *	0	0
High battery voltage	•	
High coolant temperature	•	● †
High fuel level *	0	
Low battery voltage	•	
Low coolant level		•
Low coolant temperature	•	
Low cranking voltage	•	
Low engine oil level *	0	0
Low fuel level (diesel models) *	0	0
Low fuel pressure (gas models) *	0	
Low oil pressure	•	●†
No coolant temperature signal		•
No oil pressure signal		•
Overcrank		•†
Speed sensor fault	•	
General Functions		
Alarm horn silenced		
Analog inputs	0	0
Battery charger fault *	•	0
Chicago code active *	-	
Common fault (includes †)		•
Common warning	•	•
	0	0
Digital inputs Emergency stop		•†
		• †
Engine cooldown (delay) active		
Engine start delay active		
Engine started		
Engine stopped		
EPS supplying load		
Generator running	-	
Input/output communication loss	•	
Internal failure		•
Master switch not in auto	•	
NFPA 110 alarm active		
Remote start		
System ready		
Generator Functions		1
AC sensing loss	•	•
Alternator protection		•
Ground fault input *	•	
kW overload		•
Locked rotor		•
Overfrequency		•
Overvoltage (each phase)		•
Underfrequency		•
Undervoltage (each phase)		•

Standard function

Available user function

 Function requires optional input sensors or kits and is engine dependent; see Controller Displays as Provided by the Engine ECM.

† Items included with common fault shutdown

KOHLER

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Controller Displays as Provided by the Engine ECM	Engine Manufacturer (and Model)						
	Kohler Diesel (KDI M, TM*)	Kohler Diesel (KDI TCR)	Kohler Gas (KG2204, KG2204T)	Kohler Gas (KG6208, KG6208T, KG10V08, KG10V08T)	GM and PSI/Doosan	John Deere	Volvo
Intake air pressure							D
Intake air Temperature		D		D	D	D	D
Coolant level			D	D	D	D	D
Coolant temperature		D	C/S/D	C/S/D	C/S/D	C/S/D	C/S/D
Crankcase pressure							D
ECM battery voltage	S		S/D	S	S		
Engine speed	C/S/D	C/S/D	C/S/D	C/S/D	C/S/D	C/S/D	C/S/D
Fuel pressure		D		C/S/D	C/S/D	C/S†	C/S/D
Fuel temperature		D				S/D	S
Oil level				S†	S†	S†	S†
Oil pressure		C/S/D	D	C/S/D	C/S/D	C/S/D	C/S/D
Oil temperature			S				SD

* Electronic governor and ECM are optional on KDI M and TM engines.

† Controller uses local analog input to obtain this information.

Note: REOZMD/ROZMC (Mitsubishi engines) have an ECM but do not send signals to the generator set controller.

Note: See the generator set specification sheet for engine model identification.

Controller Specifications

- Power source with circuit protection: 12- or 24-volt DC
- Power drain: 200 milliamps at 12 VDC or 100 milliamps at 24 VDC
- Humidity range: 5% to 95% noncondensing
- Operating temperature range: -40°C to +70°C (-40°F to +158°F) .
- Storage temperature range: -40°C to +85°C (-40°F to +185°F)
- Standards:
- **CE** Directive 0
- NFPA 99 0 0
- NFPA 110, Level 1
- CSA 282-09
 UL 508
- ASTM B117 (salt spray test)
- Panel dimensions—W x H, 229 x 160 mm (9.0 x 6.3 in.)

Communication and PC Software Available Options

Refer to G6-76 Monitor III Software and the communication literature for additional communication and PC software information including Modbus® communication.

- Monitor III Software for Monitoring and Control (Windows®-based user interface)
- Converter, Modbus®/Ethernet. Supports a power system using controllers accessed via the Ethernet. Converter is supplied with an IP address by the site administrator. Refer to G6-79 for converter details.
- Converter, RS-232/RS-485. Supports a power system using controllers accessed via a serial (RS-232) connection.

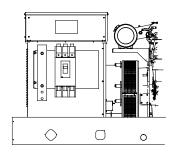
APM402 Available Options

- Float/Equalize Battery Charger available with 6 or 10 amp output for 12 or 24V DC voltage output. The 10 amp model provides NFPA 110 charging and alarming capability.
- Manual Speed Adjust available for applications using closed transition ATS. Adjustment range for 60 Hz: 1751-1849 rpm (58.2-61.8 Hz) and for 50 Hz: 1451-1549 rpm (48.2-51.8 Hz).
- Prime Power Switch prevents battery drain during generator set non-operation periods and when the generator set battery cannot be maintained by an AC battery charger.
- Remote Emergency Stop Switch available as a wall mounted panel to remotely shut down the generator set.
- Remote Monitoring Panel. The Kohler® Remote Serial Annunciator (RSA) enables the operator to monitor the status of the generator set from a remote location, which may be required for NFPA 99 and NFPA 110 installations, and up to four Automatic transfer switches.
- **Run Relay** provides a relay indicating that the generator set is runnina
- Shunt Trip Wiring provides relay outputs to trip a shunt trip circuit breaker and to signal the common fault shutdowns. Contacts rated at 10 amps at 28 VDC or 120 VAC.
- Two Input/Five Output Module provides a generator set mounted panel with two inputs and five relay outputs.

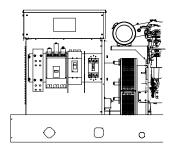
Windows® is a registered trademark of Microsoft Corporation.

Modbus® is a registered trademark of Schneider Electric.

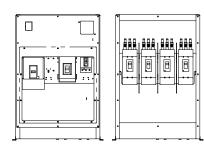
DISTRIBUTED BY:

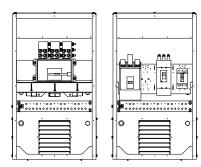

Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler® generator set distributor for availability.

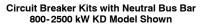
© 2018 Kohler Co., All rights reserved.


KOHLER

Industrial Generator Set Accessories


Line Circuit Breakers 15-3250 kW


Single Circuit Breaker Kit with Neutral Bus Bar 15-300 kW Model Shown



Multiple Circuit Breaker Kit with Neutral Bus Bar 180-300 kW Model Shown

Multiple Circuit Breaker Kits with Neutral Bus Bar 350-2250 kW Model Shown (also applies to some 300 kW models)

Standard Features

- The line circuit breaker interrupts the generator set output during a short circuit and protects the wiring when an overload occurs. Use the circuit breaker to manually disconnect the generator set from the load during generator set service.
- Circuit breaker kits are mounted to the generator set and are provided with load-side lugs and neutral bus bar.
- Kohler Co. offers a wide selection of molded-case line circuit breaker kits including single, dual, and multiple configurations for each generator set.
- Four types of line circuit breakers are available: (see page 2 for definitions and pages 3 and 4 for application details)
 - Magnetic trip
 - Thermal magnetic trip
 - Electronic trip
 - Electronic with ground fault (LSIG) trip
- In addition, line circuit breakers are offered with 80% and 100% ratings.
- Single line circuit breaker kits allow circuit protection of the entire electrical system load.
- Dual line circuit breaker kits allow circuit protection of selected priority loads from the remaining electrical system load.
- Multiple line circuit breaker kits with field connection barrier allow circuit protection for special applications (350- 2500 kW models and selected 80- 300 kW models).
- Up to four line circuit breakers can be used on 350-2500 kW models.
- Line circuit breakers comply with the following codes and standards unless otherwise stated.
 - UL 489 Molded Case Circuit Breakers
 - UL 1077 Supplementary Protectors
 - UL 2200 Stationary Engine Generator Assemblies

G6-88 9/21r Page 1

Line Circuit Breaker Types

Magnetic Trip

The magnetic trip features an electromagnet in series with the load contacts and a moveable armature to activate the trip mechanism. When a sudden and excessive current such as a short circuit occurs, the electromagnet attracts the armature resulting in an instantaneous trip.

Thermal Magnetic Trip

Thermal magnetic trip contains a thermal portion with a bimetallic strip that reacts to the heat produced from the load current. Excessive current causes it to bend sufficiently to trip the mechanism. The trip delay is dependent on the duration and excess of the overload current. Elements are factory- calibrated. A combination of both thermal and magnetic features allows a delayed trip on an overload and an instantaneous trip on a short circuit condition.

Electronic Trip

These line circuit breakers use electronic controls and miniature current transformers to monitor electrical currents and trip when preset limits are exceeded.

LI breakers are a combination of adjustable trip functions including long-time ampere rating, long-time delay, and instantaneous pickup. LSI breakers have all of the LI breaker features plus short-time pickup, short-time delay, and defeatable instantaneous pickup. LSIG breakers have all of the LSI breaker features plus ground-fault pickup and delay.

NOTE: MG-frame does not have a long-time delay when selected with LI breakers.

Electronic with Ground Fault Trip

The ground fault trip feature is referred to as LSIG in this document. Models with LSIG compare current flow in phase and neutral lines, and trip when current unbalance exists.

Ground fault trip units are an integral part of the circuit breaker and are not available as field-installable kits. The ground fault pickup switch sets the current level at which the circuit breaker will trip after the ground fault delay. Ground fault pickup values are based on circuit breaker sensor plug only and not on the rating plug multiplier. Changing the rating plug multiplier has no effect on the ground fault pickup values.

80% Rated Circuit Breaker

Most molded-case circuit breakers are 80% rated devices. An 80% rated circuit breaker can only be applied at 80% of its rating for continuous loads as defined by NFPA 70. Circuit conductors used with 80% rated circuit breakers are required to be rated for 100% of the circuit breaker's rating.

The 80% rated circuit breakers are typically at a lower cost than the 100% rated circuit breaker but load growth is limited.

100% Rated Circuit Breaker

Applications where all UL and NEC restrictions are met can use 100% rated circuit breakers where 100% rated circuits can carry 100% of the circuit breaker and conductor current rating.

The 100% rated circuit breakers are typically at a higher cost than the 80% rated circuit breaker but have load growth possibilities.

When applying 100% rated circuit breakers, comply with the various restrictions including UL Standard 489 and NEC Section 210. If any of the 100% rated circuit breaker restrictions are not met, the circuit breaker becomes an 80% rated circuit breaker.

Line Circuit Breaker Options

Alarm Switch

The alarm switch indicates that the circuit breaker is in a tripped position caused by an overload, short circuit, ground fault, the operation of the shunt trip, an undervoltage trip, or the push-totrip pushbutton. The alarm resets when the circuit breaker is reset.

Auxiliary Contacts

These switches send a signal indicating whether the main circuit breaker contacts are in the open or closed position.

Breaker Separators (350-2500 kW)

Provides adequate clearance between breaker circuits.

Bus Bars

Bus bar kits offer a convenient way to connect load leads to the generator set when a circuit breaker is not present.

15-300 kW. Bus bar kits are available on alternators with leads for connection to the generator set when circuit breakers are not ordered.

350-2500 kW. A bus bar kit is provided when no circuit breaker is ordered. Bus bars are also available in combination with circuit breakers or other bus bars on the opposite side of the junction box. On medium voltage (3.3 kV and above) units, a bus bar kit is standard (not applicable to KD models).

Field Connection Barrier

Provides installer wiring isolation from factory connections.

Ground Fault Annunciation

A relay contact for customer connection indicates a ground fault condition and is part of a ground fault alarm.

Lockout Device (padlock attachment)

This field-installable handle padlock attachment is available for manually operated circuit breakers. The attachment can accommodate three padlocks and will lock the circuit breaker in the OFF position only.

🗋 Lugs

Various lug sizes are available to accommodate multiple cable sizes for connection to the neutral or bus bar.

Overcurrent Trip Switch

The overcurrent trip switch indicates that the circuit breaker has tripped due to overload, ground fault, or short circuit and returns to the deenergized state when the circuit breaker is reset.

Shunt Trip, 12 VDC or 24 VDC

A shunt trip option provides a solenoid within the circuit breaker case that, when momentarily energized from a remote source, activates the trip mechanism. This feature allows the circuit breaker to be tripped by customer-selected faults such as alternator overload or overspeed. The circuit breaker must be reset locally after being tripped. Tripping has priority over manual or motor operator closing.

Shunt Trip Wiring

Connects the shunt trip to the generator set controller. (standard on KD models with the APM802 controller)

Undervoltage Trip, 12 VDC or 24 VDC

The undervoltage trips the circuit breaker when the control voltage drops below the preset threshold of 35%-70% of the rated voltage.

G6-88 9/21r Page 2

15-300* kW Line Circuit Breaker Specifications

* Includes models 300REOZJ and 300REZXC. For other 300 kW models, see the 350-2250 kW section.

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size	
	15-150	Thermal magnetic		
	10 100	Electronic LI		
	60- 150	Electronic LSI	HD	
4D/4E	00 100	Electronic LSIG		
40/4C		Electronic LI		
	60- 150	Electronic LSI	HG	
	00-100	Electronic LSIG	na	
		Magnetic, UL 1077		
	30- 100	Magnetic, UL 1077 with 12 V shunt trip	E (480 V	
		Magnetic, UL 1077 with 24 V shunt trip	(400 V max.)	
	15-150	Thermal magnetic		
		Electronic LI		
	60- 150	Electronic LSI	HD	
	00-100	Electronic LSIG		
		Electronic LI		
	60- 150	Electronic LSI	HG	
	00-150	Electronic LSIG	на	
	30	Magnetic 9-325		
	50	Magnetic 84-546	HJ	
		v		
	100	Magnetic 180-1040		
	150	Magnetic 348-1690		
	175-250	Thermal magnetic		
4P/4PX/		Electronic LI	JD	
4Q/4QX	250	Electronic LSI		
		Electronic LSIG		
		Electronic LI		
	250	Electronic LSI	JG	
	050	Electronic LSIG		
	250	Magnetic only 684-2500	JJ	
	300-400	Thermal magnetic	LA	
		Magnetic 500-1000		
		Magnetic 750-1600		
		Magnetic 1000-2000		
	400	Magnetic 1125-2250	LA	
	100	Magnetic 1250-2500	5.	
		Magnetic1500-3000		
		Magnetic 1750-3500		
		Magnetic 2000- 4000		
		Electronic LI		
	400	Electronic LSI	LG	
		Electronic LSIG		
		Magnetic, UL 1077		
4RX 4S/4SX 4TX	30- 100	Magnetic, UL 1077 with 12 V shunt trip	E (480 V	
41X 4V		Magnetic, UL 1077 with 24 V shunt trip	max.)	

80%	Rating	Circuit	Breaker
-----	--------	---------	---------

Alt. Model	Ampere Range	Тгір Туре	C. B. Frame Size
	15-150	Thermal magnetic	
		Electronic LI	
	60-150	Electronic LSI	HD
		Electronic LSIG	
		Electronic LI	
	60-150	Electronic LSI	HG
		Electronic LSIG	
	30	Magnetic 9-325	
	50	Magnetic 84-546	·
	100	Magnetic 180-1040	HJ
	150	Magnetic 348-1690	
	175-250	Thermal magnetic	
		Electronic LI	
	250	Electronic LSI	JD
		Electronic LSIG	
4RX		Electronic LI	
4S/4SX 4TX/4V	250	Electronic LSI	JG
4UA		Electronic LSIG	
4M6226	250	Magnetic only 684-2500	JJ
	300-400	Thermal magnetic	LA
		Magnetic 500-1000	
		Magnetic 750-1600	
		Magnetic 1000-2000	
	400	Magnetic 1125-2250	LA
	400	Magnetic 1250-2500	
		Magnetic1500-3000	
		Magnetic 1750-3500	
		Magnetic 2000- 4000	
		Electronic LI	
	400-600	Electronic LSI	LG
		Electronic LSIG	
	800	Electronic LSI	PG
		Electronic LSIG	
	800	Electronic LI	MG
		Thermal magnetic	_
	1000- 1200	Electronic LSI	PG
4UA		Electronic LSIG	
4M6226		Thermal Magnetic	4
	1200	Electronic LSI	PJ
		Electronic LSIG	

15-300* kW Line Circuit Breaker Specifications

* Includes models 300REOZJ and 300REZXC. For other 300 kW models, see the 300-2250 kW section.

100% Rating Circuit Breaker

100% Rating Electrically Operated Breakers

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size
	15-150	Thermal magnetic	
		Electronic LI	
	60-150	Electronic LSI	HD
4D/4E		Electronic LSIG	
		Electronic LI	
	60-150	Electronic LSI	HG
		Electronic LSIG	
	15-150	Thermal magnetic	
		Electronic LI	нр
	60-150	Electronic LSI	
		Electronic LSIG	
		Electronic LI	
	60-150	Electronic LSI	HG
		Electronic LSIG	
4P/4PX	175-250	Thermal magnetic	JD
4Q/4QX		Electronic LI	
	250	Electronic LSI	JD
		Electronic LSIG	
		Electronic LI	
	250	Electronic LSI	JG
		Electronic LSIG	
	400	Electronic LI	
		Electronic LSI	LG
		Electronic LSIG	
	15-150	Thermal magnetic	
		Electronic LI	HD
	60-150	Electronic LSI	THE .
		Electronic LSIG	
		Electronic LI	
	60-150	Electronic LSI	HG
		Electronic LSIG	
4RX	175-250	Thermal magnetic	
4S/4SX		Electronic LI	
4TX	250	Electronic LSI	JD
4V	200	Electronic LSIG	
4UA 4M6226		Electronic LI	
410220	250	Electronic LSI	JG
	250	Electronic LSIG	JG
	400	Electronic LI	
	400	Electronic LSI	LG
		Electronic LSIG	
	600-800	Electronic LSI	PG
		Electronic LSIG	
	1000-1200	Electronic LSI	PG
4UA	1000-1200	Electronic LSIG	PG
4M6226	1200	Electronic LSI	— PJ
	1200	Electronic LSIG	FJ FJ

For use as paralleling breakers with the Decision-Maker® 6000 Controller/DPS System or APM603 controller.

Generator-Mounted P-Frame, 24VDC Electrically Operated				
Alt. Model	Amps	Trip Unit	Frame	
4RX	250	3.0 LI	PJ	
4S/4SX	400	5.0 LSI	PJ	
4TX	600 800	3.0 LI	PL	
4V		5.0 LSI	PL	
	250 400 600	3.0 LI	PJ	
4UA		5.0 LSI	PJ	
4M6226 800 1000 1200	3.0 LI	PL		
	5.0 LSI	PL		

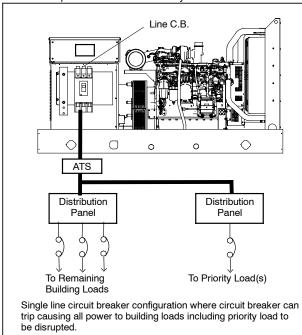
All circuit breakers listed in this table include line side bus and load side lugs, 24VDC motor operators, 2 type C auxiliary contacts, and 1 type C SDE overcurrent switch contact. No second breakers are allowed in combination with these breakers.

Interrupting Ratings

<u> </u>			
Circuit Breaker Frame Size	240 Volt, kA	480 Volt, kA	600 Volt, kA
HD	25	18	14
HG	65	35	18
HJ	100	65	25
JD	25	18	14
JG	65	35	18
JJ	100	65	25
LA	42	30	22
LG	05	05	10
MG	65	35	18
PG	65	35	18
PJ	100	65	25
PL	125	100	25

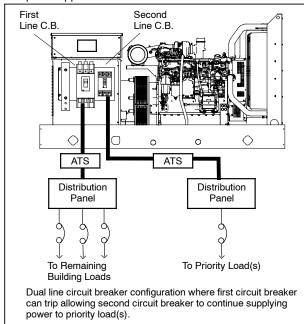
Circuit Breaker Lugs Per Phase (Al/Cu)

	0	
Frame Size	Ampere Range	Wire Range
E (480 V max.)	30-100	Up to two wire terminals fitting 10-32 or 1/4-20 stud
Н	15-150	One #14 to 3/0
	175	One 1/0 to 4/0
J	200-250	One 3/0 to 350 kcmil
LA	300-400	One #1 to 600 kcmil or Two #1 to 250 kcmil
LG	400-600	Two 2/0 to 500 kcmil AL/CU
М	800	Three 3/0 to 500 kcmil
6	600-800	Three 3/0 to 500 kcmil
Р	1000-1200	Four 3/0 to 500 kcmil
Mechanical L	oad Lugs Included wi	th H, J, and LG LSIG Neutrals
Н	60-150	One #14 to 3/0 AL/CU
J	250	One 3/0 to 350 kcmil AL/CU
LG	400-600 Two 4/0 to 500 kcmil AL/	


15-300* kW Line Circuit Breaker Applications

* Includes models 300REOZJ and 300REZXC. For other 300 kW models, see the 300-2250 kW section.

Single Circuit Breaker Installations


Circuit Breaker Combinations

A generator set with a single circuit breaker installed typically feeds a single transfer switch and then a distribution panel. This allows protection of the entire system.

Multiple Circuit Breaker Installations

A generator set with dual circuit breakers installed is used to separate critical loads. Typically, one circuit breaker will feed a main transfer switch with noncritical loads and the other circuit breaker will feed a second transfer switch that feeds critical or priority loads. Multiple circuit breakers allow circuit protection for special applications.

Alternator Model	First C. B. Frame	Second C. B. Frame	Third C. B. Frame	Trip Type
	Н	—		
ALL	J	—	_	
except 4D/4E	LA	—	_	All
	LG	—	_	
	Н	—	_	Standard or LSIG
4D/4E	Н	Н	_	No LSIG
	Н		_	
4P/4PX	J	H or J	_	No LSIG
4Q/4QX	LA		_	
	LG	H, J or LG	_	
	М	—	_	All
	Р	—	_	All
	H or J	H or J	_	
4RX 4S/4SX	LA	H, J, or LA	_	
4TX 4V	LG			No LSIG
	М	H, J, LA, or LG	—	
	Р	01 204		
	H or J	H or J	H or J	
	M or P	—	_	All
	H or J	H or J	—	_
	LA	H, J, or LA		
	LG	H, J, LA, or LG	—	All
	M or P	H, J, LA, or LG	_	
	Р	Р		
	H or J	H or J	H or J	
4114		H or J	H or J	1
4UA 4M6226	LA	LA	H, J, or LA	
		H or J	H or J	1
	LG	LA	H, J, or LA	No LSIG
		LG	H, J, LA, or LG	
		H or J	H or J	1
	M or P	LA	H, J, or LA	
		LG	H, J, or LG	

300-2250* kW Line Circuit Breaker Specifications

* Includes models 300REZXB and 300RZXB. For models 300REOZJ and 300REZXC, see the 15-300 kW section. For KD model generator sets, see pages 8 and 9.

80% Rating Circuit Breaker

100% Rating Circuit Breaker

			C. B. Frame
Alt. Model	Ampere Range	Trip Type	Size
	15-150	Thermal Magnetic	HD
		Electronic LI	_
	60-150	Electronic LSI	HD
		Electronic LSIG	
	175-250	Thermal Magnetic	_
		Electronic LI	JD
	250	Electronic LSI	
		Electronic LSIG	
		Electronic Ll	_
	60- 150	Electronic LSI	HG
		Electronic LSIG	
		Electronic LI	
	250	Electronic LSI	JG
		Electronic LSIG	
	30	9-325 A. Mag. Trip	
	50	84-546 A. Mag. Trip	НЈ
	100	180-1040 A. Mag. Trip	HJ
	150	348-1690 A. Mag. Trip	
	250	684-2500 A. Mag. Trip	JJ
4M	300-400	Thermal Magnetic	
5M		500-1000 A. Mag. Trip	
7M		750-1600 A. Mag. Trip	
		1000-2000 A. Mag. Trip	
		1125-2250 A. Mag. Trip	LA
	400	1250-2500 A. Mag. Trip	
		1500-3000 A. Mag. Trip	
		1750-3500 A. Mag. Trip	
		2000- 4000 A. Mag. Trip	
		Electronic LI	
	400-600	Electronic LSI	LG
		Electronic LSIG	
	800	Electronic Ll	MG
	1000-1200	Thermal Magnetic	
		Electronic LSI	PG
	800-1200	Electronic LSIG	
		Thermal Magnetic	1
	1200	Electronic LSI	PJ
		Electronic LSIG	1 .
		Thermal Magnetic	
	1600-2500	Electronic LSI	BJ
	1000-2000	Electronic LSIG	10

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size
	15- 150	Thermal Magnetic	
		Electronic LI	
	60- 150	Electronic LSI	HD
		Electronic LSIG	
	175-250	Thermal Magnetic	
		Electronic LI	
	250	Electronic LSI	JD
		Electronic LSIG	
		Electronic LI	
	60- 150	Electronic LSI	HG
		Electronic LSIG	
4M	250	Electronic LI	
5M 7M		Electronic LSI	JG
		Electronic LSIG	
		Electronic LI	
	400	Electronic LSI	LG
		Electronic LSIG	
	000 1000	Electronic LSI	50
	600-1200	Electronic LSIG	PG
	1000	Electronic LSI	
	1200	Electronic LSIG	PJ
		Electronic LSI	
	1600-2500	Electronic LSIG	RJ
	1000,0000	Electronic LSI	
	1600-3000	Electronic LSIG	NW

100% Rating Electrically Operated Breakers

For use as paralleling breakers.*

Alt. Model	Amps	Trip Unit	Frame
4M 5M 7M	250, 400, 600, 800, 1000, 1200 1600, 2000, 2500, 3000	3.0 LI	PJ
		5.0 LSI	PJ
		3.0 LI	PL
		5.0 LSI	PL
,		Electronic LSI	NW
		Electronic LSIG	NW

* P-frame breakers can be used with the Decision-Maker® 6000 Controller/DPS System or APM603 controller.

NW breakers are for use with the APM603 only.

All circuit breakers listed in this table include line side bus and load side lugs, 24VDC motor operators, and 1 type C SDE overcurrent switch contact. P-frame breakers include 2 type C auxiliary contacts. NW breakers include 4 auxiliary contacts.

No second breakers are allowed in combination with these breakers.

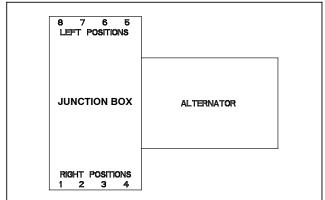
Load Bus Rating

Gen. Set kW	Alt. Model	Rating, Amperes	Туре
350- 2250 kW	4M/ 5M/ 7M	3000	Load Bus

300-2250* kW Line Circuit Breaker Specifications

* Includes models 300REZXB and 300RZXB. For models 300REOZJ and 300REZXC, see the 15-300 kW section. For KD model generator sets, see pages 8 and 9.

Interrupting Ratings


Multiple Circuit Breaker Combinations

Circuit Breaker Frame Size	240 Volt, kA	480 Volt, kA	600 Volt, kA
HD	25	18	14
HG	65	35	18
HJ	100	65	25
JD	25	18	14
JG	65	35	18
JJ	100	65	25
LA	42	30	22
LG		0.5	10
MG	65	35	18
NW	100	100	85
PG	65	35	18
PJ	100	65	25
PL	125	65	25
RJ	100	65	25

Circuit Breaker Lugs Per Phase (AI/Cu)

Frame Size	Ampere Range	Wire Range
Н	15- 150	One #14 to 3/0
	175	One 1/0 to 4/0
J	200-250	One 3/0 to 350 kcmil
LA	300-400	One #1 to 600 kcmil or Two #1 to 250 kcmil
LG	400-600	Two 2/0 to 500 kcmil
М	800	Three 3/0 to 500 kcmil
P	600-800	Three 3/0 to 500 kcmil
Р	1000-1200	Four 3/0 to 500 kcmil
RJ	RJ 1600-2500 (8) 1/0 to 75 (16) 1/0 to	
NW	1600-3000	(10) 1/0 to 750 kcmil or (20) 1/0 to 300 kcmil

Breaker Positions

NOTE: Breaker and load bus phasing on right positions is A- B- C and on left positions is C- B- A.

NOTE: H, HG, J, JG, and LG-frames when selected with LSIG trip require two mounting spaces (one space for the breaker and one space for the LSIG neutral). These combinations are not reflected in the Multiple Circuit Breaker Combinations table on this page.

	Positions			
Alternator Model	1 or 5	2 or 6	3 or 7	4 or 8
	H/J			
	H/J	H/J		
	H/J	H/J	H/J	
	H/J	H/J	H/J	H/J
	LA			
	LA	H/J		
	LA	LA		
	LA	H/J	H/J	
	LA	LA	H/J	
	LA	LA	LA	
	LA	H/J	H/J	H/J
	LA	LA	H/J	H/J
	LA	LA	LA	H/J
	LA	LA	LA	LA
	LG			
	LG	H/J		
	LG	LA		
	LG	LG		
	LG	H/J	H/J	
	LG	LA	H/J	
	LG	LA	LA	
	LG	LG	H/J	
	LG	LG	LA	
4M/	LG	LG	LG	
5M/ 7M	LG	H/J	H/J	H/J
7 101	LG	LA	H/J	H/J
	LG	LA	LA	H/J
	LG	LA	LA	LA
	LG	LG	H/J	H/J
	LG	LG	LA	H/J
	LG	LG	LA	LA
	LG	LG	LG	H/J
	LG	LG	LG	LA
	LG	LG	LG	LG †
	М	/P		
	М	/P	H/J	
	М	/P	LA	
	М	/P	LG	
	М	/P	M/	P‡
	М	/P	H/J	H/J
		/P	LA	H/J
		/P	LA	LA
		/P	LG	H/J
		/P	LG	LA
		/P	LG	LG †
		-	§	•
			V§	
			US KIT §	
			th 1010 mm	

Frame size LG is not available in position 4 with 1219 mm (48 in.) junction box.

Frame sizes M/P are not available in position 3 or 4 with 1219 mm (48 in.) junction box.

§ R breakers, NW breakers, and the load bus kit occupy all four positions on a side.

800-2500 kW KD Model Line Circuit Breaker Specifications

80% Rating Circuit Breaker

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size	
	15-150	Thermal Magnetic		
		Electronic LI		
	60-150	Electronic LSI	HD	
		Electronic LSIG		
		Electronic LI		
	60-150	Electronic LSI	HG	
		Electronic LSIG		
	30	9- 325 A. Mag. Trip		
	50	84- 546 A. Mag. Trip		
	100	180- 1040 A. Mag. Trip	HJ	
	150	348- 1690 A. Mag. Trip		
	175-250	Thermal Magnetic		
		Electronic LI		
	250	Electronic LSI	JD	
		Electronic LSIG		
		Electronic LI		
	250	Electronic LSI	JG	
KH		Electronic LSIG		
	250	684-2500 A. Mag. Trip	JJ	
	400	2000-4800 A Mag. Trip		
	600	3000- 7200 A Mag. Trip		
		Electronic LI	LG	
	400-600	Electronic LSI		
		Electronic LSIG		
	800	Electronic LI	MG	
	1000-1200	Thermal Magnetic		
	000 4000	Electronic LSI	PG	
	800-1200	Electronic LSIG		
		Thermal Magnetic		
	1200	Electronic LSI	PJ	
		Electronic LSIG		
		Thermal Magnetic		
	1600-2500	Electronic LSI	RJ	
		Electronic LSIG		

100% Rating Circuit Breaker

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size	
	15-150	Thermal Magnetic		
		Electronic LI		
	60-150	Electronic LSI	HD	
		Electronic LSIG		
		Electronic LI		
	60-150	Electronic LSI	HG	
		Electronic LSIG		
	175-250	Thermal Magnetic		
		Electronic LI		
	250	Electronic LSI	JD	
КН		Electronic LSIG		
	250	Electronic LI		
		Electronic LSI	JG	
		Electronic LSIG		
		Electronic LI		
	400	Electronic LSI	LG	
		Electronic LSIG		
	600- 1200	Electronic LSI	PG	
	600-1200	Electronic LSIG	PG	
	1000	Electronic LSI	РJ	
	1200	Electronic LSIG	PJ	
	1000 0500	Electronic LSI	ы	
	1600-2500	Electronic LSIG	RJ	
	1600-3000	Electronic LSI	NW	
	1000-0000	Electronic LSIG	INVV	

100% Rating Electrically Operated Breakers

For use as paralleling breakers with the APM603 controller.

Alt. Model	Amps	Trip Unit	Frame
кн	250, 400, 600, 800, 1000, 1200 1600, 2000, 2500, 3000	3.0 LI	PJ
		5.0 LSI	PJ
		3.0 LI	PL
		5.0 LSI	PL
		Electronic LSI	NW
		Electronic LSIG	NW

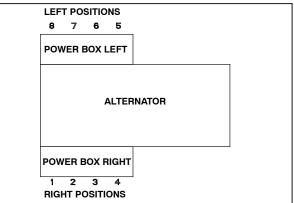
All circuit breakers listed in this table include line side bus and load side lugs, 24VDC motor operators, and 1 type C SDE overcurrent switch contact. P-frame breakers include 2 type C auxiliary contacts. NW breakers include 4 auxiliary contacts.

No second breakers are allowed in combination with these breakers.

Load Bus Rating

Gen. Set	Alt.	Rating,	Туре
Model	Model	Amperes	
KD800- KD2500	KH	2000 3000 4000 4500	Load Bus

800-2500 kW KD Model Line Circuit Breaker Specifications


Interrupting Ratings

Circuit Breaker Frame Size	240 Volt, kA	480 Volt, kA	600 Volt, kA
HD	25	18	14
HG	65	35	18
HJ	100	65	25
JD	25	18	14
JG	65	35	18
JJ	100	65	25
LG			
MG	65	35	18
PG			
PJ	100	05	05
RJ	100	65	25
NW	100	100	85

Circuit Breaker Lugs Per Phase (AI/Cu)

Frame Size	Ampere Range	Wire Range
Н	15-150	One #14 to 3/0
	175	One 1/0 to 4/0
J	200-250	One 3/0 to 350 kcmil
LG	400-600	Two 2/0 to 500 kcmil
М	800	Three 3/0 to 500 kcmil
P	600-800	Three 3/0 to 500 kcmil
Р	1000-1200	Four 3/0 to 500 kcmil
R	1600-2500	(8) 1/0 to 750 kcmil or (16) 1/0 to 300 kcmil
NW	1600-3000	(10) 1/0 to 750 kcmil or (20) 1/0 to 300 kcmil
Mechanical L	oad Lugs Included w	ith H, J, and LG LSIG Neutrals
Н	60-150	One #14 to 3/0 AL/CU
J	250	One 3/0 to 350 kcmil AL/CU
LG	400-600	Two 4/0 to 500 kcmil AL/CU

Breaker Positions

NOTE: Breaker and load bus phasing on right positions is A- B- C and on left positions is C- B- A.

NOTE: H, J, and LG-frames when selected with LSIG trip require two mounting spaces (one space for the breaker and one space for the LSIG neutral). These combinations are not reflected in the Multiple Circuit Breaker Combinations table on this page.

Multiple Circuit Breaker Combinations

		Posi	tions			
Alternator Model	1 or 5	2 or 6	3 or 7	4 or 8		
	H/J					
	H/J	H/J				
	H/J	H/J	H/J			
	H/J	H/J	H/J	H/J		
	LG					
	LG	H/J				
	LG	LG				
	LG	H/J	H/J			
	LG	LG	H/J			
	LG	LG	LG			
	LG	H/J	H/J	H/J		
	LG	LG	H/J	H/J		
KH	LG	LG	LG	H/J		
	LG	LG	LG	LG		
	M/	P*				
	M/	P*	H/J			
	M /	P*	LG			
	M /	P*	M/P *			
	M /	P*	H/J	H/J		
	M /	P*	LG	H/J		
	M /	P*	LG	LG		
	R§					
	NW §					
		LOAD B	US KIT §			
		1				

* M and P breakers occupy two positions each.

 $\ensuremath{\S}\xspace$ R breakers, NW breakers, and the load bus kit occupy all four positions on a side.

Enclosed Circuit Breakers

The following loose circuit breakers are available in NEMA 1 or NEMA 3R enclosures for remote mounting.

80% Rating Circuit Breakers

100% Rating Circuit Breakers

Ampere Range	Trip Type	C. B. Frame Size
15-150	Thermal Magnetic	HD
	Electronic LI	
60-150	Electronic LSI	HD
175-250	Thermal Magnetic	
	Electronic LI	JD
250	Electronic LSI	
00.450	Electronic LI	
60-150	Electronic LSI	HG
050	Electronic LI	10
250	Electronic LSI	JG
30	9-325 A. Mag. Trip	
50	84- 546 A. Mag. Trip	
100	180- 1040 A. Mag. Trip	HJ
150	348- 1690 A. Mag. Trip	
250	684-2500 A. Mag. Trip	JJ
300-400	Thermal Magnetic	
	500- 1000 A. Mag. Trip	
	750- 1600 A. Mag. Trip	
	1000- 2000 A. Mag. Trip	
100	1125-2250 A. Mag. Trip	LA
400	1250- 2500 A. Mag. Trip	
	1500- 3000 A. Mag. Trip	
	1750-3500 A. Mag. Trip	
	2000- 4000 A. Mag. Trip	
400,000	Electronic LI	LG
400-600	400- 600 Electronic LSI	
800	Electronic LI	MG
1000-1200	Thermal Magnetic	
800-1200	Electronic LSI	PG
1200	Thermal Magnetic	PJ
1200	Electronic LSI	۲J

Ampere Range	Тгір Туре	C. B. Frame Size
15-150	Thermal Magnetic	
00.450	Electronic LI	HD
60-150	Electronic LSI	
175-250	Thermal Magnetic	
050	Electronic LI	JD
250	Electronic LSI	
00.450	Electronic LI	110
60-150	Electronic LSI	HG
050	Electronic LI	10
250	Electronic LSI	JG
100	Electronic LI	
400	Electronic LSI	LG
600-800	Electronic LSI	PG
000-800	Electronic LSIG	гч

Circuit Breaker Lugs Per Phase (AI/Cu)

-	
Ampere Range	Wire Range
15-150	One #14 to 3/0
175	One #4 to 4/0
200-250	One 3/0 to 350 kcmil
000	One #1 to 600 kcmil
300	Two #1 to 250 kcmil
250	One #2 to 500 kcmil
400-600	Two 2/0 to 500 kcmil
800	Three 3/0 to 500 kcmil
250-800	Three 3/0 to 500 kcmil
1000-1200	Four 3/0 to 500 kcmil
	15-150 175 200-250 300 250 400-600 800 250-800

Accessories

Accessory	Breaker Frame			
Auxiliary Contacts	H, J, LA, LG, M, P			
Shunt Trip 12VDC	H, J, LA, LG, M, P			
Shunt Trip 24VDC	H, J, LA, LG, M, P			
Undervoltage Trip 12VDC	H, J, LA, LG, M, P			
Undervoltage Trip 24VDC	H, J, LA, LG, M, P			
Alarm Switch	H, J, LA, LG, M, P			
Overcurrent Switch	H, J, LA, LG, M, P			
Note: LA frame accepts a maximum combination of (2) internal accessories (not including padlock attachment)				

Enclosed Circuit Breakers

Enclosure Specifications

	Dimensions, L x W x H, mm (in.)						
Frame Size	NEMA 1	NEMA 3R					
H, J	365 x 156 x 797 (14.4 x 6.2 x 31.4)	374 x 156* x 820 (14.8 x 6.2* x 32.3)					
LA	388 x 165* x 1130 (15.3 x 6.5* x 44.5)	391 x 200* x 1118 (15.4 X 7.9* X 44.0)					
LG †	519 x 293 x 1515 (20.4 x 11.5 x 59.6)	519 x 293 x 1515 (20.4 x 11.5 x 59.6)					
M, P	533 x 248 x 1324 (21.0 x 9.58 x 52.1)	533 x 309 x 1324 (21.0 x 12.2 x 52.1)					
* Width does not ir	nclude circuit breaker operating handle.						

† Enclosures accept 80% rated L- frame circuit breakers 600A max OR 100% rated L-frame circuit breakers 400A max.

Solid Neutral Assemblies and Ground Kits

Frame Size	Neutral or Ground	Maximum Ampere Rating	Terminals	Conductors per Terminal	Wire Size	Туре
	N	100			#14 to 1/0	CU
	Neutral	100	2	1	#12 to 1/0	AL
H, J	Neutral	250	2	1 or 2	#1 to 600 #1 to 250	AL or CU
			2	1	#4 to 300	AL or CU
	Ground	250	2	1	#6 to 300	AL or CU
	Neutral	100	2	1 or 2	#1 to 600	AL or CU
		400	2	1 or 2	#1 to 250	AL or CU
LA	Ground		2	1	#10 to 2/0	CU
		—	2	1	#6 to 2/0	AL
	Neutral	200-1000	2	3	3/0 to 500	AL or CU
LG	Ground	—	4	1	#6 to 250	AL or CU
	Neutral	Neutral 1200		1	3/0 to 500	AL or CU
M, P			8 (4 in, 4 out)	2	#6 to 350	AL or CU
	Ground	—	4	1	#6 to 300	AL or CU

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Enclosed Circuit Breakers and Fused Disconnect Switches

The following loose circuit breakers and fused disconnect switches are available in NEMA 1 enclosures for remote mounting.

100% Rating 3P Circuit Breakers, 2500-3250 kW

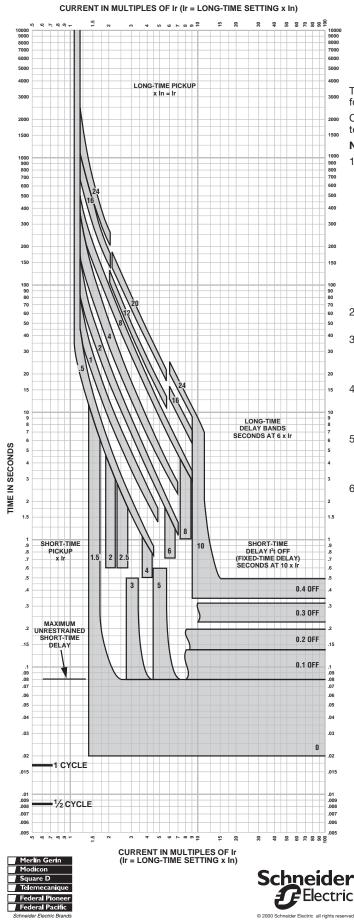
Amps	Trip Type	Volts	Hz	kW	Approvals
3000		600	60	2500	UL891
4000		780	60	2500	UL891
4000		600	60	2800/ 3000/ 3250	UL891
5000	Electronic LI	380	50	2500/ 2800/ 3250	IEC
5000		480	60	2800/ 3000/ 3250	IEC
3000		600	60	2500	UL891
4000		480	60	2500	UL891
4000	Electronic	600	60	2800/ 3000/ 3250	UL891
5000	LSIG	380	50	2500/ 2800/ 3250	IEC
5000		480	60	2800/ 3000/ 3250	IEC

Fused Disconnect Switches 50/60 Hz, HVL-CC Switch, UL and IEC

Amps	Trip Type	Poles	Accessories
			None
200			3 Auxiliary Contacts
400	Fuse	ЗP	3 Auxiliary Contacts and Blown Fuse Indicator
600			3 Auxiliary Contacts, Blown Fuse Indicator, and Protective Relay

NEMA 1 Enclosure Specifications, Fused Disconnect Switches

	Dimensions, L x W x H, mm (in.)						
Size	mm in.						
13.8 kV	946 x 749 x 2591 *	37.25 x 29.5 x 102					
4160 V	946 x 883 x 2591 *	37.25 x 34.75 x 102					
* Height	* Height includes pull box.						


NEMA 1 Enclosure Specifications, Breakers

	Dimensions, L x W x H, mm (in.)						
Size	mm in.						
3000 A	914.4 x 914.4 x 2324	36 x 36 x 91.5					
4000 A	1219 x 1067 x 2324	48 x 42 x 91.5					
5000 A	1219 x 1219 x 2324	48 x 48 x 91.5					

DISTRIBUTED BY:

© 2007 Kohler Co. All rights reserved.

Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler® generator set distributor for availability.

MICROLOGIC[®] 5.0/6.0 A/P/H TRIP UNIT CHARACTERISTIC TRIP CURVE NO. 613-4

Long-time Pickup and Delay Short-time Pickup and I²t OFF Delay

The time-current curve information is to be used for application and coordination purposes only.

Curves apply from -30°C to +60°C ambient temperature.

Notes:

- There is a thermal-imaging effect that can act to shorten the long-time delay. The thermalimaging effect comes into play if a current above the long-time delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in a shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately 20 minutes is required between overloads to completely reset thermal-imaging.
- 2. The end of the curve is determined by the interrupting rating of the circuit breaker.
- 3. With zone-selective interlocking on, short-time delay utilized and no restraining signal, the maximum unrestrained short-time delay time band applies regardless of the setting.
- Total clearing times shown include the response times of the trip unit, the circuit breaker opening, and the extinction of the current.
- For a withstand circuit breaker, instantaneous can be turned OFF. See 613-7 for instantaneous trip curve. See 613-10 for instantaneous override values.
- 6. Overload indicator illuminates at 100%.

POWERPACT[®] P- and R-Frame Molded Case Circuit Breakers (Standard or 100% rated up to 2500 A)

The most compact and innovative molded case circuit breakers

P-Frame 1200 A

R-Frame

POWERPACT Molded Case Circuit Breakers lead the industry with proven, reliable protection and innovative design. Providing unparalleled performance and control, this generation of P- and R-frame circuit breakers features exclusive MICROLOGIC[®] Trip Units, which allow for a range of sophisticated applications for metering and monitoring. In addition, units can be interchanged to allow for maximum flexibility and are field-installable for easy upgrades as needed.

The compact P- and R-frame circuit breakers permit smaller footprint and higher density installations using I-LINE[®] Panelboards and Switchboards. These circuit breakers are available in 100% rated construction up to 2500 A to meet a broad range of commercial and industrial application needs.

Full-Featured Performance

- P-frame 1200 A available in both standard and 100% ratings with sensor sizes 250–1200 A. Interrupting ratings (AIR) G-35kAIR, J-65kAIR and L-100kAIR at 480 VAC
- R-frame 2500 A available in both standard and 100% ratings with sensor sizes 600–2500 A. Interrupting ratings (AIR) G-35kAIR, J-65kAIR and L-100kAIR at 480 VAC
- Compact breaker size allows for smaller footprint installations using I-LINE Panelboards and Switchboards. 9" width on P-frame designs and 15" width on R-frame designs provide increased density installations
- Most field-installable accessories are common to all frame sizes for easier stocking and installation
- Selection of four interchangeable MICROLOGIC Trip Units with POWERLOGIC[®] power metering and monitoring capabilities available in advanced trip units
- Compatible with POWERLOGIC[®] systems and high amperage power circuit breakers
- Built-in MODBUS[®] protocol provides an open communications platform and eliminates the need to purchase additional, proprietary network solutions
- Connection options include bus, cable or I-Line for installation flexibility
- Additional options are available for 5-cycle closing, stored energy mechanisms and draw-out mounting of 1200 A breakers

POWERPACT[®] P- and R-Frame Molded Case Circuit Breakers (Standard or 100% rated up to 2500 A)

Onboard Intelligence

For "smarter breakers," a range of MICROLOGIC[®] Trip Units provides advanced functionality, such as a communications interface, and power metering and monitoring capabilities. With the appropriate MICROLOGIC Trip Unit, you can communicate with breakers, gather power information, monitor events and remotely control breakers based on predetermined conditions, leading to substantial savings in electrical system operating costs.

These interchangeable, microprocessor-controlled, plug-in devices provide the next generation of protection, measurement and control functions, delivering not only greater electrical system safety but also improved system integration and coordination.

MICROLOGIC[®] Trip Units

Choose the Model that Meets Your Needs

MICROLOGIC 3.0 and 5.0

 Basic circuit protection including long-time, instantaneous and optional short-time adjustments

MICROLOGIC 3.0A, 5.0A and 6.0A

- Long-time, instantaneous and optional short-time adjustments
- Integrated ammeter and phase loading bar graph
- LED trip indicator
- Zone selective interlocking with downstream and upstream breakers
- Optional ground-fault protection
- Optional MODBUS[®] communications interface

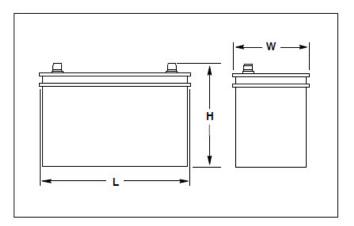
MICROLOGIC 5.0P and 6.0P

- Long-time, instantaneous and optional short-time adjustments
- Advanced relay protection (current imbalance, under/over voltage, etc.)
- Inverse Definite Minimum Time Lag (IdmtL) long-time delay curve shaping for improved coordination
- Basic power metering and monitoring functions
- Standard MODBUS communications interface compatibility with POWERLOGIC[®] installations
- Standard GF alarm on 5.0P.
 6.0P has equipment ground-fault tripping protection

MICROLOGIC 5.0H and 6.0H

- All 5.0P and 6.0P functions
- Enhanced POWERLOGIC power metering and monitoring capabilities
- Basic power quality (harmonic) measurement
- Waveform capture

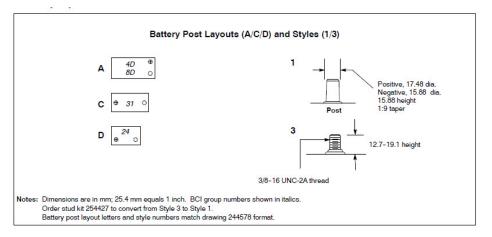
Contact your Square D sales representative for additional information. Or, visit www.SquareD.com.


Industrial Generator Set Accessories

System Batteries

KOHLER.

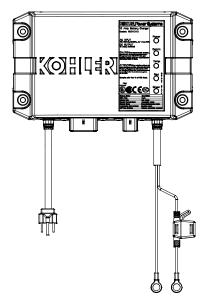
Typical Overall Dimensions



Standard Features

- Kohler Co. selects batteries to meet the engine manufacturer's specifications and to comply with NFPA requirements for engine-cranking cycles.
- Heavy-duty starting batteries are the most cost-effective means of engine cranking and provide excellent reliability in generator set applications.
- Tough polypropylene cases protect against life-shortening vibration and impact damage.
- Batteries are rated according to SAE standard J-537.
- All batteries are 12-volts. Kits that contain two or four batteries are available for 24-volt systems and/or systems with redundant starters.
- Wet- and dry-charged batteries have lead-calcium or leadantimony plates and use sulferic acide electrolyte. Removable cell covers allow checking of electrolyte specific gravity.
- Absorbant glass mat (AGM) batteries are sealed and maintenance free.
- Batteries are for applications below and above 0 $^\circ$ C (32 $^\circ$ F).

Charge Type*	Battery Part Number	Battery Qty. per Size	BCI Group Size	Battery SAE Dimension, mm (in.)		Cold Cranking Amps at 18°C (0°F) Min.	Reserve Capacity Minutes at 27° (80°F) Min.	Battery Post Layout and Style	
				L	W	Н		IVIII1.	
Wet	324586	2	31	330.2 (13.0)	173.0 (6.8)	239.8 (9.4)	950	185	C/3


Battery Specifications

KOHLER.

Industrial Generator Set Accessories

12/24 Volt, 10 Amp Automatic Multi-Stage Battery Charger

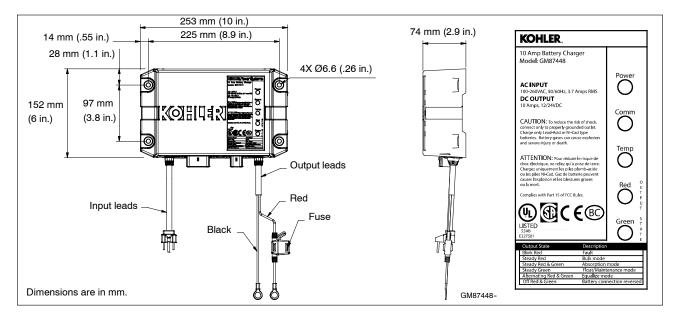
The battery charger is a fully-automatic, high efficiency battery charger that charges batteries rapidly and safely. The battery charger is designed for an industrial environment.

The battery charger is designed for operation with an engine cranking battery.

The battery charger is universal voltage input capable, comes with a standard 120 V/60 Hz AC plug, and charges 12 VDC or 24 VDC battery systems.

Five LED lights indicate power, communication status, temperature compensation status, charge curve, and charger status.

With the optional battery temperature sensor connected, the battery charger can adjust output voltages for optimal charging.


Standard Features

- 12 or 24 VDC output
 - Automatic voltage detection
- Automatic multi-stage charging modes
 - Recovery charge
 - Bulk charge
 - Absorption charge
 - Float charge
 - Equalize charge
- Charges the following type batteries:
 - Flooded lead acid (FLA)
 - AGM
 - o Gel cell
 - High performance AGM
 - Nickel-cadmium (NiCad)
- 5 LED status indicators
- Durable potted assembly for waterproofing and vibration resistance
- Reverse-polarity protection
- Short-circuit protection
- Electronically limited output current
- Optional temperature compensation (FLA only)
- User adjustable parameters to support optimal manufacturer recommended charge curve.
- Code compliance:
 - o UL 1236 Listed
 - NFPA 110, Level 1 compatible (when used with Kohler controller and connected to engine harness)
 - CSA C22.2 No. 107.2-01
 - $\circ~$ FCC $\,$ Title 47, Part 15 Class A
 - ∘ CE
 - IBC 2015
 - OSHPD

DC Output		AC Input			Shipping Weight	
Volts (Nominal)	Amps	Volts (Nominal)	Amps	Overall Dimensions W x D x H	kgs	lbs
12/24	10	100-260	3.7	253 mm x 152 mm x 74 mm (10.0 in x 6.0 in x 2.9 in)	3.6	7.9

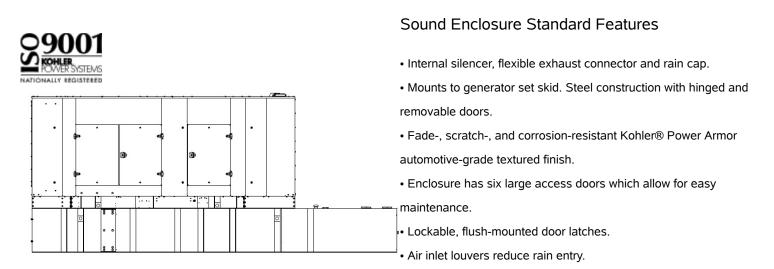
KOHLER.

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Specifications

		٦ [
AC Input	100-260 VAC	Enclo
Frequency Input	50/60 Hz	
DC Output	10 Amps @ 12 VDC or 10 Amps @ 24 VDC (On battery voltage regulation ±1%; current is electronically limited	Batter
Fuse Protection	15 amps ATC	
Battery Types	Flooded Lead Acid (FLA) AGM Gel Cell	AC Po
	High Performance AGM	Availa
	Nickel-Cadmium (NiCad)	Т
Monitoring LED Indications	Power Communication Temperature compensation Output charger curve and charger status: • Red • Green	
Environmental		
Operating	-20° to 70°C (-4° to 158° F)	DIST
Storage	-40° to 85°C (-40° to 185° F)	
Relative Humidity	5 to 95% (non-condensing)	
Salt Spray Testing	ASTM B117	
Corrosion Resistant	From battery gases	

Enclosure					
Environmental Resistant	From rain, snow, dust, and dripping water				
Battery Connections					
Lead Length	1.8 m (6 ft.) red and black leads				
Battery Connections	9.5 mm (3/8 in.) ring terminals				
AC Power Connections					
Lead Length	1.8 m (6 ft.)				
Storage	Standard US style 3-prong AC plug				
Available Options					
Temperature compensation					


ISTRIBUTED BY:

Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler® generator distributor for availability.

© 2017, 2019 by Kohler Co. All rights reserved.

Industrial Generator Set Accessories

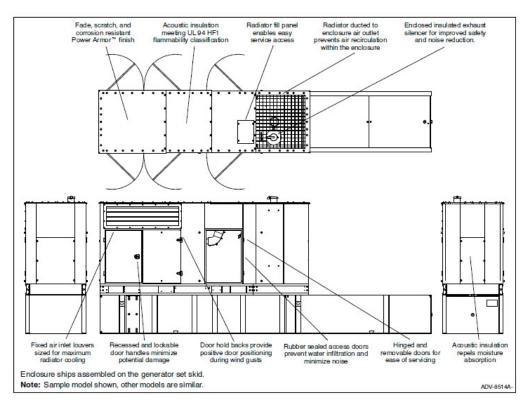
Sound Enclosure with Subbase Fuel Tank Package

KOHLER

- Internal vertical discharge plenum directs air up to reduce noise.
- · Acoustic insulation that meets UL 94 HF1 flammability classification.

• Sound enclosure offering Level 1 or Level 2 around reduction using acoustic insulation.

Subbase Fuel Tank Features

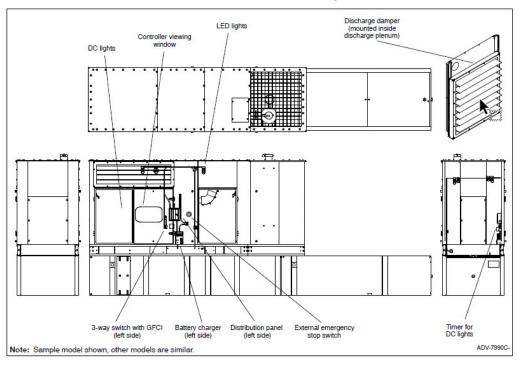

• The fuel tank has a Power Armor Plus textured epoxy-based rubberized coating.

• The above-ground rectangular secondary containment tank mounts directly to the generator set, below the generator set skid (subbase).

• Both the inner and outer tanks have emergency relief vents.

• Flexible fuel lines are provided with subbase fuel tank selection.

• The secondary containment tanks construction protects against fuel leaks or ruptures. The inner (primary) tank is sealed inside the outer (secondary) tank. The outer tank contains the fuel if the inner tank leaks or ruptures.



Sound Enclosure Features

• Heavy-duty formed panels, solid construction. Preassembled package offering corrosion resistant, dent resilient structure mounting directly to the generator set skid. Available in 14 gauge steel.

- Power Armor automotive-grade finish resulting in advanced corrosion and abrasion protection as well as enhanced edge coverage and color retention.
- Internal exhaust silencer offering maximum component life and operator safety, and includes rain shield and cap.
- Note: Installing an additional length of exhaust tail pipe may increase backpressure levels. Please refer to the generator set spec sheet for the maximum backpressure value.
- Service access. Multi-personnel doors for easy access to generator set control and servicing of the fuel fill, fuel gauge, oil fill, and battery.
- Interchangeable modular panel construction allows design flexibility without compromising building standards.
- · Bolted panels facilitate service, future modification upgrades, or field replacement.
- · Cooling/combustion air intake. Weather protective designs using fixed air inlet louvers. Sized for maximum cooling airflow.
- Cooling air discharge. Weather protective design featuring vertical air discharge. Exhausts air through a punched air outlet grille.
- Heavy-duty formed panels, solid construction. Preassembled package offering corrosion resistant, dent resilient structure mounting directly to the generator set skid. Available in 14 gauge steel.
- Power Armor automotive-grade finish resulting in advanced corrosion and abrasion protection as well as enhanced edge coverage and color retention.
- · Internal exhaust silencer offering maximum component life and operator safety.
- Note: Installing an additional length of exhaust tail pipe may increase backpressure levels. Please refer to the generator set spec sheet for the maximum backpressure value.
- · Service access. Multi-personnel doors for easy access to generator set control and servicing of the fuel fill, fuel gauge, oil fill, and battery.
- · Interchangeable modular panel construction. Allows complete serviceability or replacement without compromising enclosure design.
- · Bolted panels facilitate service, future modification upgrades, or field replacement.
- · Cooling/combustion air intake. Weather protective designs using fixed air inlet louvers. Sized for maximum cooling airflow.
- Cooling air discharge. Attenuated models offering an internal vertical discharge scoop that redirects cooling air up and above the enclosure to reduce noise.
- Attenuated design using a silencer and acoustic insulation UL 94 HF1 listed for flame resistance.

Weather and Sound Enclosure Options

• Extended operation. Usable tank capacities offers full load standby operation of up to 72 hours.

• Power Armor Plus textured epoxy-based rubberized coating that creates an ultra-thick barrier between the tank and harsh environmental conditions like humidity, saltwater, and extreme temperatures, and provides advanced corrosion and abrasion protection.

• UL listed. Secondary containment generator set base tank meeting UL 142 tank requirements.

• NFPA compliant. Designed to comply with the installation standards of NFPA 30 and NFPA 37.

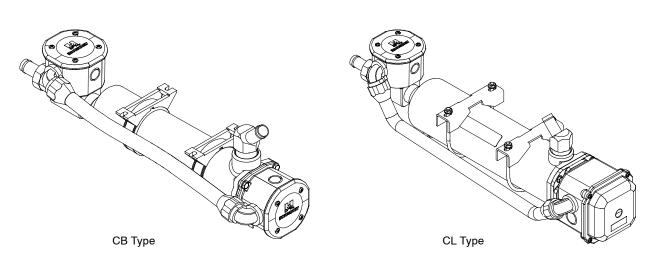
• Integral external lift lugs. Enables crane with spreader-bar lifting of the complete package (empty tank, mounted generator set, and enclosure) to ensure safety.

• Emergency pressure relief vents. Meets UL requirements; ensures adequate venting of inner and outer tank under extreme pressure and/or emergency conditions.

- Normal vent with cap. Vent is raised above lockable fuel fill.
- Fuel level sender with fuel level and low and high fuel warning annunciated through the generator set controller.
- · Leak detection switch. Annunciates a contained primary tank fuel leak condition at generator set control.
- · Electrical stub-up.

Capacity, L (gal.)		Fuel Tank	Fuel Tank Width,	Fuel Tank	Enclosure and Fuel Tank Height, mm (in.)	Fuel Tank Height (H), mm (in.)	Sound Pressure Level, dB(A)
Lift base	0	5520 (217)	1495 (59)	4745 (10460)	2400 (94)	0 (0)	84.7
3384 (894)	24	5761 (227)	1495 (59)	6229 (13732)	3238 (127)	838 (33)	84.7
Lift base	0	5520 (217)	1495 (59)	4346 (9581)	2400 (94)	0 (0)	84.7
3384 (894)	24	5761 (227)	1495 (59)	5830 (12852)	3238 (127)	838 (33)	84.7

Note: Data in table is for reference only, refer to the respective ADV drawings for details.


Note: Refer to TIB-114 for generator set sound data.

* Max. weight includes the generator set (wet) with largest alternator option, enclosure, silencer, and tank (no fuel).

KOHLER.

Industrial Generator Set Accessories

Engine Block Heater Kits

Block Heater Kit, Typical

Applicable Models

- 180-200RZXB
- 180-200REZXB
- 230-275REOZJE
- 300-500REOZJ
- 350- 500REOZJB
- 350-500REOZJC
- 350-400REOZJD
- 500REOZVC
- 550-600REOZVB

Standard Features

- UL-C/US listed
- CE compliant
- Controls for automatic operation
- Compact design
- Easy to install

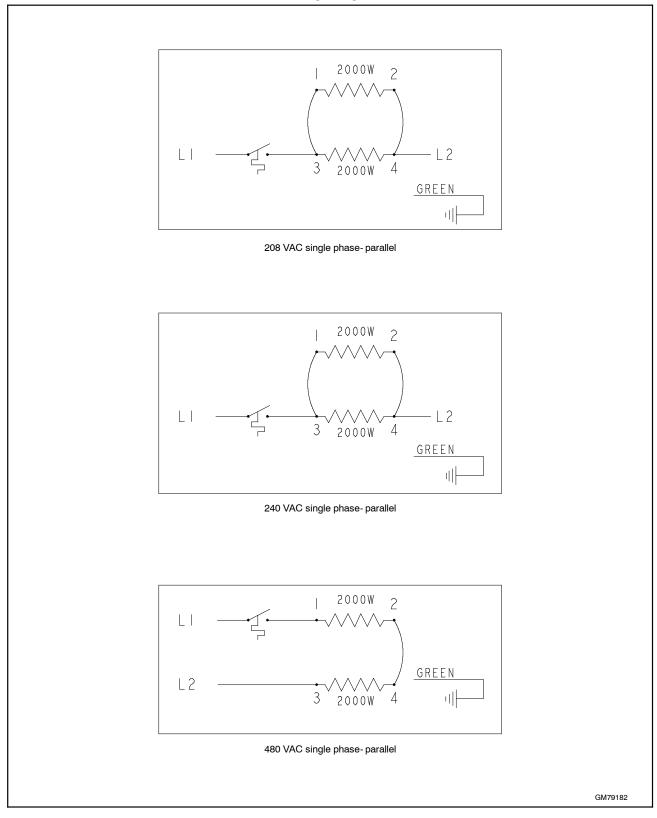
Description

The engine block heater kit heats the engine coolant in cold ambient, warming the cylinders, oil, and charge air circuit which all help to give a faster starting time. The engine block heater uses thermosiphon action to circulate warm coolant into the engine and supplies constant heating to the engine. The engine block heater helps to extend element life and gives a significant reduction in electrical consumption.

The engine block heater has a fixed setting thermostat that turns ON when the engine coolant temperature reaches $27^{\circ}C$ ($80^{\circ}F$) and turns OFF when the engine coolant temperature reaches $38^{\circ}C$ ($100^{\circ}F$).

The engine block heater kit is recommended for ambient temperatures below 10°C (50°F).

The engine block heater kits are available in 120 V, 208 V, 240 V, and 480 V versions.

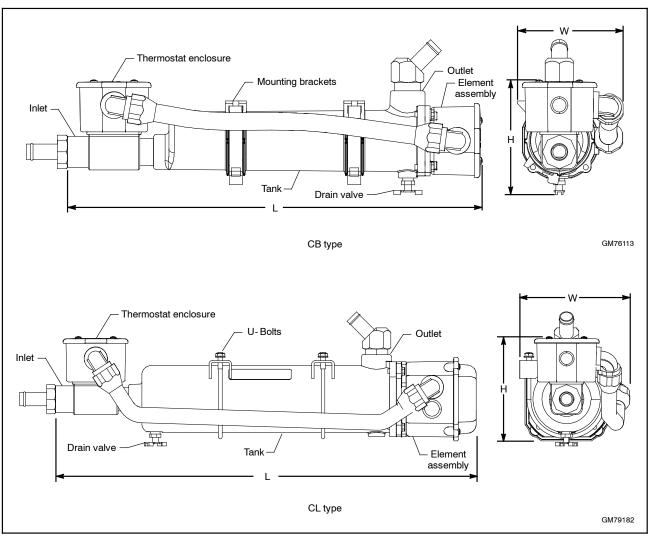

Block Heater Specifications

Heating Fluid	Water, Coolant Mix (50% Glycol/50% Water)
Thermostat Temperature Range	27°-38°C (80°-100°F)
Temperature High Limit	96°C (205°F)
Max. Pressure	125 psi (860 kPa)
Inlet/Outlet Plumbing	1 in. NPT
System Ingress	NEMA 4

Specifications

Block Heater Kit Number	Component	Watts	Voltage	Phase
GM75809- KA1	GM76113	2500	90-120	1
GM75809- KA2	GM76114	2500	190-208	1
GM75809- KA3	GM76115	2500	210-240	1
GM75809- KA4	GM76116	2500	380-480	1
GM76120- KA1	GM76113	2500	90-120	1
GM76120- KA2	GM76114	2500	190-208	1
GM76120- KA3	GM76115	2500	210-240	1
GM76120- KA4	GM76116	2500	380-480	1
GM79186- KA1	GM79182	4000	190-208	1
GM79186- KA2	GM79183	4000	210-240	1
GM79186- KA3	GM79184	4000	380-480	1
GM79186- KP1	GM79182	4000	190-208	1
GM79186- KP2	GM79183	4000	210-240	1
GM79186- KP3	GM79184	4000	380-480	1
GM79187- KA1	GM79182	4000	190-208	1
GM79187- KA2	GM79183	4000	210-240	1
GM79187- KA3	GM79184	4000	380-480	1
GM79187- KP1	GM79182	4000	190-208	1
GM79187- KP2	GM79183	4000	210-240	1
GM79187- KP3	GM79184	4000	380-480	1
GM84820- KA1	GM76113	2500	90-120	1
GM84820- KA2	GM76114	2500	190-208	1
GM84820- KA3	GM76115	2500	210-240	1
GM84820- KA4	GM76116	2500	380-480	1

Wiring Diagram



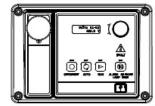
KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Dimensions and Weights

CB type block heater size, $L \times H \times W$, mm (in): CL type block heater size, $L \times H \times W$, mm (in): CB type block heater weight, kg (lb): CL type block heater weight, kg (lb): 510 x 132 x 129 (20.1 x 5.2 x 5.1) 597 x 147 x 158 (23.5 x 5.8 x 6.2) 3 (6.9) 4.5 (10)

DISTRIBUTED BY:		

Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler[®] generator distributor for availability.


Industrial Generator Set Accessories

Voltage Regulators

KOHLER

Integral Voltage Regulator with Kohler® APM402/ Decision-Maker® 3000 and Menu-Driven Selections (15-1000 kW Generator Set Models)

APM402 and Decision-Maker[®] 3000 Controller with Integral Voltage Regulator

The voltage regulator is integral to the controller and uses patented hybrid voltae regulator design providing $\pm 0.5\%$ no-load to full-load regulation using root-mean-square (RMS) voltage sensing. The voltage regulator features three-phase sensing and is available for 12- or 24-volt engine electrical systems.

Voltage Regulators

The following information provides general features, specifications, and functions of available voltage regulators.

This information generally applies to a single generator set and multiple generator sets with paralleling applications. Refer to the respective generator set specification sheet and see your authorized distributor for information regarding specific voltage regulator applications and availability.

Integral Voltage Regulators with APM402/Decision-Maker® 3000 Controllers

Calibration	Digital Display	Range Settings	Default Selection
Voltage Adjustment	Volt Adj	± 10% of System Voltage	System Voltage
Underfrequency Unload or Frequency Setpoint	Frequency Setpoint	42 to 62 Hz	2.5 Hz Below Nominal Frequency
Underfrequency Unload Scope		0-10% of System Voltage (Volts per Cycle)	5% of System Voltage

Industrial Generator Set Accessories

Voltage Regulators

KOHLER_®

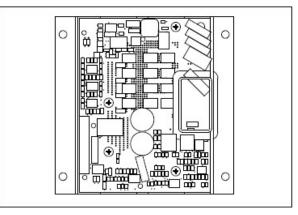
Specification/Feature	Integral with APM402/Decision- Maker® 3000
Generator Set Availability	15-1000 kW
Туре	Patented Hybrid Design
Status and Shutdown Indicators	LEDs and Text LCD Display
Operating Temperature	-40 ° C to 70 ° C (-40 ° F to 158 ° F)
Storage Temperature	-40 ° C to 85 ° C (-40 ° F to 185 ° F)
Humidity	5-95% Non-Condensing
Circuit Protection	Solid-State, Redundant Software and Fuses
Sensing, Nominal	100-240 Volts (L-L), 50-60 Hz
Sensing Mode	RMS, Single- or 3-Phase
Input Requirements	8-36 VDC
Continuous Output	5 VDC @ 100mA max. 5.0 ADC with GM88453 Activator Board
Maximum Output	5 VDC @ 100mA max. 5.0 ADC with GM88453 Activator Board
Transition Frequency	42.0-62.0Hz
Exciter Field Resistance	4-30 Ohms with GM88453 Activator Board
No-Load to Full-Load Voltage Regulation	± 0.5%
Thermal Drift	<0.5% (-40 ° C to 70 ° C) [-40 ° F to 158 ° F] Range
Response Time	Less than 5µS
System Voltage Adjust.	± 10%
Voltage Adjustment	Controller Menu Knob
Remote Voltage Adjustment	not available
Paralleling Capability	not available
VAR/PF Control Input	not available

Integral Voltage Regulator with APM402/Decision-Maker® 3000 Controller

- The APM402/Decision-Maker® 3000 digital display and pushbutton/rotary dial provide access to data. A two-line LCD display provides complete and concise information. A two-line vacuum fluorescent display provides complete and concise information.
- The Decision-Maker® 3000 graphical display and pushbutton/ rotary dial provide access to data. A five-line, 35-characters per line LCD display provides complete and concise information include gain, ramp rate, reactive droop, VAR control (P, I, D gains) and PF control (P, I, D gains).
- The controllers provide ISO 8528-5, Class G3, compliance for transient response on some 20-300 kW generator set models. Both controllers support Modbus®.
- These controllers can control Fast ResponseTM II, Fast ResponseTM X, and wound field alternators using the GM88453 activator board.

Voltage Regulator Menu

- Voltage adjustment, ±10% of system voltage
- V/Hz cut-in, 42-62 Hz
- Underfrequency unload slope, 0-10% of system voltage


Jumpers

- L1-L2 volts
- L2-L3 volts (3-phase)
- L3-L1 volts (3-phase)
- L1-N volts
- L2-N volts
- L3-N volts (3-phase)

Industrial Generator Set Accessories

Voltage Regulators

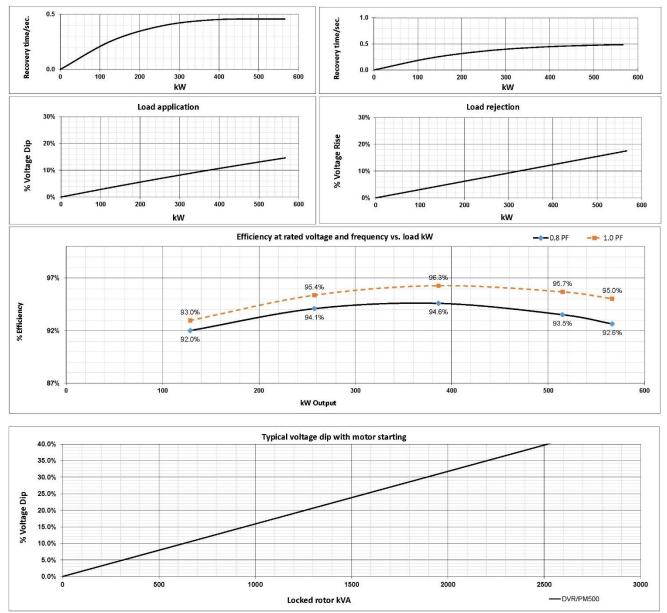
- Interfaces between the controller and alternator assembly using rotor field leads, auxiliary power windings, and optic board leads.
- Allows the Decision-Maker® controllers the ability to control a wound-field alternator using the same control signal as Fast ResponseTM alternator.
- Permits the generator set controller to control the current to the exciter field of a wound-field excited alternator.
- Contains two isolated relay driver outputs (RDO) rated at 250 mA. Provides RDO outputs indicating a field over-excitation condition and that the alternator is supplying voltage to the activator.

Modbus® is a registered trademark of Schneider Electric.

Alternator Data

Alternator Data Sheet

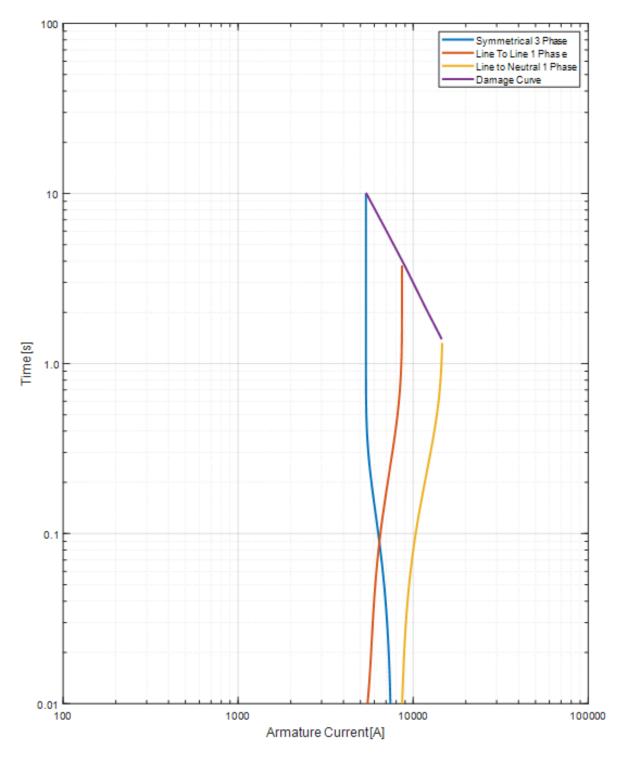
Alternator Model: 5M4027


12-MAR-19

Kilowatt ratin	gs at	1800 RPM	60 Hertz	122			12 Leads			
kW (kVA)		3 Phase	0.8 Power				Dripproof or Oper	n Enclosu	re	
			CONTINU	ous ^{(1) (2)}			9	STANDBY	(1)(2)	
Volta	ge*	NEMA B / 80 °C	NEMA F	[:] / 105 °C	NEMAH/12	25 °C	NEMA F / 130	D°C	NEMA	H / 150 °C
240/4	180	440 (550)	500	(625)	515 (644)	515 (644)		560) (700)
220/4	140	410 (513)	460	(575)	485 (606)	500 (625)		520) (650)
208/4	116	400 (500)	445	(556)	470 (588)	475 (594)		505	5 (631)
200/4	100	382 (478)	427	(534)	441 (551)	443 (554)		459	9 (574)
190/3	380	360 (450)	405	(506)	405 (506)	405 (506)		405	5 (506)
1) Rise by resistar	nce method, M	il-Std-705, Method 680.1b.		2 Machine	e rated for Max Ambi	ient of 40	°C, Max Altitude 3300 f	ft		
Submittal Dat	a. 480 Volts	*, 515 kW, 644 kVA, 0.	8 P F 1800 F	PM 60 Hz	3 Phase		Hi		ONNECTI	
Mil-Std-705B			0.00		Mil-Std-705C	1			1.00	
Method		Description	Value	Units	Method		Description		Value	Units
301.1b	Insulation	Resistance	>1.5 Meg	Ohms	505.3b	Overs	peed		2250	RPM
	High Poter	ntial Test			507.1c	Phase	Sequence CCW-OI	DE	ABC	
	Main State	or	1960	Volts	508.1c	Voltag	e Balance, L-L or L	-N	0.2%	
302.1a	Main Rotor		1500	Volts	601.4a	L-L Ha	rmonic Max - Tota	1	5.0%	
502.14	Exciter Sta	ator	1500	Volts	001.4a	(Disto	tion Factor)		3.0%	
	Exciter Ro	tor	1500	Volts	601.4a	L-L Ha	rmonic Max - Singl	le	3.0%	
	PMG Stator Stator Resistance, Line to Line High Wye Connection		1500	Volts	601.1c	Deviat	Deviation Factor		5.0%	
			0.01260	Ohms		TIF (19	60 Weightings)		<50	
			0.01200	Onns		THF (EC, BS & NEMA Weigh	ntings)	<2%	
		otor Resistance		Ohms						
401.1a	Exciter Sta	ntor	23	Ohms	1					
	Exciter Ro	tor	0.045	Ohms	1					
	PMG State	or	2.1	Ohms	1					
410.1a	No Load E	xciter Field Amps	0.7	A DC		Addit	ional Prototype N	1il-Std Me	ethods	
410.14	at 480 Vol	ts Line to Line	0.7	A DC			are Available o	on Reque	st.	
420.1a	Short Circu	uit Ratio	0.591							
421.1-	Val Cumahan		2.670	PU		Gener	ator Frame		572	
421.1a	xa Synchr	onous Reactance	0.956	Ohms		Type			MagnaMa	ax
122.1	VO N	C	0.226	PU		Insula	tion		Class H	
422.1a	X2 Negativ	ve Sequence React.	0.081	Ohms		Coupli	ng - Single Bearing	ç i	Flexible	
122.1 -	V0 7 C .	D	0.056	PU		-	isseur Windings		Full	
423.1a	XU Zero Se	equence Reactance	0.020	Ohms		Excitat	tion Ext	t. Voltage F	Regulated, B	rushless
125.4	VIIT ·		0.162	PU		Voltag	e Regulator		DVR2000	
425.1a	X'd Transie	ent Reactance	0.058	Ohms		Voltag	e Regulation		0.25%	
100.4	VII-LO LA		0.137	PU						
426.1a	x"d Subtra	ansient Reactance	0.049	Ohms						
C200	Xq Quadra	ature Synchronous	1.100	PU		Coolin	g Air Volume		1520	CFM
	Reactance		0.394	Ohms			ejection rate		2033	Btu's/m
407.4-	T'd Transie	ent Short Circuit	0.114	6.00		Full lo	ad current		774.3	Amps
427.1a	Time Cons		0.114	Sec	1.00		um Input hp requi		738.3	HP
120 1-		ansient Short Circuit	0.01	Cas			ad torque		2153	Lb-ft
428.1a	Time Cons		0.01	Sec			ncy at rated load :		93.5%	
120.4		ient Open Circuit	1.00	~						
430.1a	Time Cons		1.68	Sec						
432.1a	and a second sec	ircuit Time	0.017	Sec]					

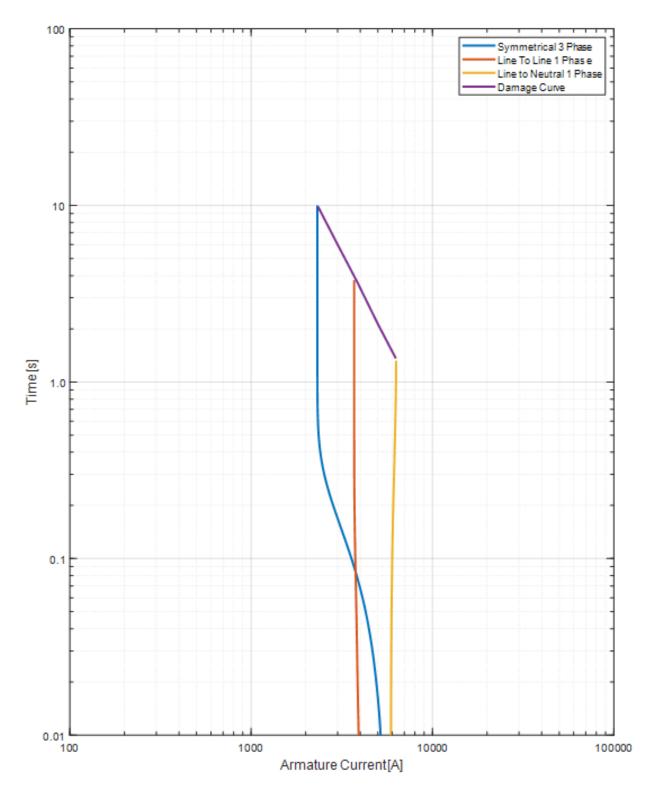
* Voltage refers to wye (star) connection, unless otherwise specified.

The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. © 2015 Kohler Co. All rights reserved.


TYPICAL DYNAMIC CHARACTERISTICS

Voltage refers to wye (star) connection, unless otherwise specified ..

SHORT CIRCUIT DECREMENT CURVE 60 Hz, Low Wye or Delta Connection


Full Load Current: 1788 Amps Steady State S.C. Current: 5364 Amps Max. 3 ph. Symm. S.C. Current: 9770 Amps

NOTE: Symmetrical component values are shown, maximum asymmetrical values are 1.732 times the symmetrical values.

SHORT CIRCUIT DECREMENT CURVE 60 Hz, High Wye Connection

Full Load Current: 775 Amps Steady State S.C. Current: 2325 Amps Max. 3 ph. Symm. S.C. Current: 5657 Amps

NOTE: Symmetrical component values are shown, maximum asymmetrical values are 1.732 times the symmetrical values.

Cooling Data

Generator Set Cooling System Data Sheet

		5	i0°C Ambie	nt Tempera	ature Coolir	ng System			
	Total external restriction	Ра	0	125	187	250	312	375	Enclosed
500REOZJC	on open unit ⁷	(in.H₂O)	(0)	(0.5)	(0.75)	(1)	(1.25)	(1.5)	Units
60Hz (Standby	Maximum allowable	°C	50	47	45	43	42	NA	45
Duty)	ambient temperature	(°F)	(122)	(117)	(113)	(109)	(108)	(NA)	(113)
	0 11 1 1 1	m³/min	435	410	395	380	365	NA	NA
	Cooling system airflow	(ft³/min)	(15400)	(14500)	(13900)	(13400)	(12900)	(NA)	(NA)

- 1. The data shown above is the anticipated cooling performance for a typical generator set when following proper installation techniques.
- 2. Cooling performance is based on operation at 100 m (328 ft.) above sea level. For elevations higher than 100 m (328 ft.), typical cooling performance derate is 1°C (1.8°F) per 250 m (820 ft.).
- 3. For high ambient conditions, check TIB-101 for the generator set power output derate schedule.
- 4. Incorrect installation, improper operation, fouling of the cooling system, and other variable conditions may reduce cooling performance.
- 5. Kohler manufactured sound enclosed models are rated in free air with no additional restriction. Consult factory for other variants or conditions such as additional ducting or hoods.
- 6. Performance is based on a 50/50 water and ethylene glycol mixture.
- 7. Total external restriction includes restriction upstream and downstream of the unit any ducting supplying intake air to the unit and any ducting for the discharge.

Sound Data

Generator Set Sound Data Sheet

						Sound Pressure Data in dB(A)								
Gene Set M		Hz	Loa	d	Raw Exh	naust	İsc	pen Unit, solated Exhaust		Weath Enclos		Level 1 Sound Enclosure		Level 2 Sound Enclosure
5000		60	100% l	_oad	oad 119.		ç	94.8		92.9		8	4.7	76.0
500REOZJC		00	No Lo	bad	102.	6	ę	90.3		88.4		7	6.8	70.9
	Note: Sound pressure data is the logarithmic average of eight perimeter measurement points at a distance of 7 m (23 ft.) Exhaust data which is a single measurement point at 1 m (3.3 ft.) from the mouth of a straight pipe exhaust.								.), except Raw					
500RE	OZJC		60 Hz						Sou	nd Pres	sure Le	vels, d	B(A)	
Load	Distance,		nclosure	Mea	Measurement		Octave Band Center Frequency (Hz)							Overall Level
LUau	m (ft)		liciosule	Cloc	k Position	63	125	250	500	1000	2000	4000	8000	
				:	3:00	56.0	69.5	65.4	67.1	68.6	65.1	56.3	48.4	74.6
					1:30	54.8	69.0	67.0	69.5	70.7	66.4	58.5	50.8	76.0
					0-Engine	56.0	65.7	68.6	71.5	69.5	69.8	64.8	55.7	76.7
100%					0:30	52.9	69.3	67.4	70.7	70.3	68.3	62.2	53.5	76.6
Load	7 (23)	Lev	vel 2		9:00	56.0	70.4	69.6	68.6	68.8	68.3	60.7	51.9	76.4
Load		Sou	und		7:30	56.1	72.3	68.0	67.8	68.2	66.6	56.4	54.5	76.2
					Alternator	59.4	69.9	69.7	70.3	64.9	66.1	58.9	57.5	75.9
				4	4:30	54.6	72.1	67.2	66.0	68.1	65.8	54.2	50.0	75.6
				8 - pos	s. log avg.	56.1	70.2	68.1	69.3	68.9	67.3	60.2	53.7	76.0

						S	ound P	ressure	Levels	, dB(A)							
Load	Distance,	Enclosure	Measurement			Octave I	Band Ce	enter Fr	equency	(Hz)		Overall Level					
Luau	m (ft)		Clock Position	63	125	250	500	1000	2000	4000	8000						
			3:00	62.4	72.4	68.8	74.6	75.4	74.4	71.2	64.5	81.3					
			1:30	60.8	70.3	72.4	78.2	80.9	78.7	74.8	68.5	85.2					
		Level 1	12:00 - Engine	64.8	73.1	70.3	80.1	82.8	81.1	76.9	69.9	87.1					
100%								10:30	59.0	71.5	72.3	78.3	81.2	79.4	75.5	68.7	85.6
Load	7 (23)		9:00	63.4	73.0	72.2	76.5	79.7	77.7	74.4	67.4	84.3					
LUau		Sound	7:30	61.9	74.5	71.0	77.6	79.3	77.0	72.7	67.2	84.1					
			6:00-Alternator	63.9	73.7	71.8	77.0	79.7	79.9	70.5	65.2	84.7					
			4:30	62.4	74.9	72.4	75.9	76.9	75.1	70.3	63.0	82.6					
			8-pos. log avg.	62.6	73.1	71.6	77.6	80.0	78.4	73.9	67.3	84.7					

				Sound Pressure Levels, dB(A)								
Load	Distance, m (ft)	Enclosure	Measurement Clock Position	3:00	1:30	12:00 Eng.	10:30	9:00	7:30	6:00 Alt.	4:30	8-pos. log avg.
100% Load	7 (23)	Weather	Overall Levels	93.8	92.5	92.0	94.1	94.5	93.8	87.6	92.0	92.9

						S	ound P	ressure	e Levels	, dB(A)							
Load	Distance,		Measurement			Octave I	Band Ce	enter Fr	equency	' (Hz)		Overall Level					
Luau	m (ft)		Clock Position	63	125	250	500	1000	2000	4000	8000						
			3:00	60.2	71.0	81.2	84.3	88.3	91.6	86.9	87.8	95.7					
		1:30	57.6	69.6	86.6	86.9	87.5	87.9	83.9	85.1	94.4						
		Open Unit, Isolated Exhaust	12:00 - Engine	66.3	73.5	87.1	83.0	88.7	88.7	82.6	77.5	93.9					
100%	lso						10:30	64.9	74.7	87.5	85.1	90.3	91.3	86.4	81.8	93.9 96.0	
Load	7 (23)		9:00	66.1	75.4	85.3	85.3	89.3	93.2	86.3	84.5	96.4					
LUau								7:30	64.1	73.4	86.1	82.8	89.1	92.2	85.8	82.3	95.7
			6:00-Alternator	64.5	73.7	82.8	82.9	81.2	84.0	77.5	74.3	89.5					
			4:30	60.9	70.8	79.9	82.4	87.6	89.9	85.3	83.7	93.9					
			8-pos. log avg.	63.9	73.1	85.3	84.4	88.3	90.6	85.0	83.6	94.8					

						Sound Pressure Levels, dB(A)								
Load	Distance,	Evb	aust	Octave Band Center Frequency (Hz)								Overall Level		
LUau	m (ft)	EXII	ausi	63	125	250	500	1000	2000	4000	8000			
100% Load	1 (3.3)	Raw Exhaust (No Silencer)			101.9	106.7	107.4	109.4	114.1	114.4	111.1	119.5		
500RE	OZJC	60 Hz	Sound Pressure Levels, dB(A)											
Lood	Distance,	Enclosure	Measurement		Octave Band Center Frequency (Hz)									
Load	m (ft)	Enclosure	Clock Position	63	125	250	500	1000	2000	4000	8000			
			3:00	52.5	61.6	63.0	62.3	63.5	56.8	47.8	40.9	69.1		
			1:30	50.9	63.5	64.8	62.6	66.3	58.0	48.1	41.4	70.8		
			12:00 - Engine	52.2	62.4	65.6	62.2	64.2	57.6	48.8	39.3	70.2		
			10:30	50.8	63.4	63.3	63.2	63.8	57.8	47.9	40.7	69.8		
No	7 (23)	Level 2 Sound	9:00	53.2	62.3	67.6	61.2	62.1	59.1	48.6	41.4	70.6		
Load	. (/		7:30	52.9	63.4	67.5	60.9	63.6	61.0	49.3	43.3	71.1		
			6:00-Alternator	56.8	66.0	70.5	64.7	63.6	60.8	54.7	49.6	73.5		
			4:30	52.9	64.8	64.8	60.8	64.2	59.9	47.1	42.1	70.4		
			8-pos. log avg.	53.2	63.6	66.6	62.4	64.1	59.1	49.8	43.7	70.9		

					Sound Pressure Levels, dB(A)							
Lood	Distance,	Enclosure	Measurement Clock Position		C	ctave B	and Cen	ter Freq	uency (Hz)		Overall Level
Load	m (ft)	Enclosure		63	125	250	500	1000	2000	4000	8000]
			3:00	53.4	65.3	69.2	69.1	67.5	61.8	53.9	47.1	74.4
		Level 1 Sound	1:30	53.7	66.4	70.8	69.6	71.1	63.0	55.5	49.4	76.1
			12:00 - Engine	53.6	65.0	66.8	70.5	67.4	62.6	56.1	47.3	74.3
			10:30	55.4	67.2	69.6	69.8	69.5	63.9	56.5	49.8	75.6
No	7 (23)		9:00	56.6	67.1	70.3	66.7	67.0	63.0	54.8	47.0	74.5
Load	. (20)	20101 1 000010	7:30	54.4	68.7	71.3	69.3	71.0	66.6	59.3	53.9	76.8
			6:00-Alternator	58.2	70.8	70.6	72.3	77.5	75.0	65.2	57.7	81.2
			4:30	56.7	69.0	70.2	70.1	70.6	66.3	58.6	50.9	76.6
			8-pos. log avg.	55.6	67.8	70.0	69.9	71.7	68.0	59.2	52.1	76.8

				Sound Pressure Levels, dB(A)								
Load	Distance, m (ft)	Enclosure	Measurement Clock Position	3:00	1:30	12:00 Eng.	10:30	9:00	7:30	6:00 Alt.	4:30	8-pos. log avg.
No Load	7 (23)	Weather	Overall Levels	88.0	89.5	89.6	90.3	88.3	88.2	83.6	86.4	88.4

					Sound Pressure Levels, dB(A)							
Load	Distance,		Measurement		C	Octave B	and Cen	ter Freq	uency (Hz)		Overall Level
LUau	m (ft)		Clock Position	63	125	250	500	1000	2000	4000	8000	
			3:00	55.4	66.8	80.9	81.4	85.2	84.4	79.6	70.8	89.9
		Open Unit, Isolated Exhaust	1:30	50.7	66.0	86.3	85.9	84.3	83.2	77.6	71.1	91.4
			12:00-Engine	57.2	68.7	87.2	80.3	86.9	83.3	77.6	71.5	91.5
			10:30	57.5	68.8	87.5	81.0	87.0	85.2	80.4	73.0	92.2
No	7 (23)		9:00	56.9	70.3	84.4	80.3	84.4	84.4	78.8	71.0	90.2
Load	. ()		7:30	55.8	68.4	85.6	78.1	84.2	83.9	77.8	69.5	90.1
			6:00-Alternator	56.4	67.4	82.4	77.1	78.4	76.8	69.3	60.0	85.5
			4:30	56.6	68.4	79.6	78.9	83.0	83.7	77.4	67.9	88.3
			8-pos. log avg.	56.2	68.3	85.0	81.2	84.8	83.6	78.1	70.4	90.3

		Sound Pressure Levels, dB(A)									
Load	Distance,	e, Exhaust		C		Overall Level					
LUau	m (ft)	Exhaust	63	125	250	500	1000	2000	4000	8000	
No Load	1 (3.3)	Raw Exhaust (No Silencer)	80.2	87.3	95.1	95.3	95.3	97.2	92.7	84.2	102.6

Exhaust System Data

Enclosed Generator Set Exhaust System Data Sheet

Model	Enclosure Type	Consumed Back Pressure (in H20)	Consumed Back Pressure (in Hg)	Back Pressure Limit(s) (in H20)	Back Pressure Limit(s) (in Hg)	Flex Exhaust Tube(s)	Silencer	Drawing
500REOZJC	All Weather & Sound Level 1 (SL1) Enclosures	32.5	2.4	16-40	1.2-2.9	GM110933	GM110935	ADV-8189
	All Sound Level 2 (SL2) Enclosures	29.5	2.2	16-40	1.2-2.9	GM110330 Flex GM110329 Cross Tube	GM109791 & GM109792	ADV-8189

1. Total system exhaust back pressure is applicable to generator sets equipped with Kohler standard enclosure packages.

2. For generator sets with multiple exhaust outlets, total system exhaust back pressure value represents each outlet.

3. The total system back pressure should not exceed the manufacturer's recommended limit.

4. The total back pressure only includes exhaust components installed inside the Kohler enclosure. Customers must calculate any additional back pressure caused by piping, extensions, or components added after the silencer outlet. Refer to the installation manual for additional details.

Enclosed Generator Set Exhaust System Data Sheet

Model	Enclosure Type	Consumed Back Pressure (in H20)	Consumed Back Pressure (in Hg)	Back Pressure Limit(s) (in H20)	Back Pressure Limit(s) (in Hg)	Flex Exhaust Tube(s)	Silencer	Drawing
500REOZJC	All Weather & Sound Level 1 (SL1) Enclosures	32.5	2.4	16-40	1.2-2.9	GM110933	GM110935	ADV-8189
	All Sound Level 2 (SL2) Enclosures	29.5	2.2	16-40	1.2-2.9	GM110330 Flex GM110329 Cross Tube	GM109791 & GM109792	ADV-8189

1. Total system exhaust back pressure is applicable to generator sets equipped with Kohler standard enclosure packages.

2. For generator sets with multiple exhaust outlets, total system exhaust back pressure value represents each outlet.

3. The total system back pressure should not exceed the manufacturer's recommended limit.

4. The total back pressure only includes exhaust components installed inside the Kohler enclosure. Customers must calculate any additional back pressure caused by piping, extensions, or components added after the silencer outlet. Refer to the installation manual for additional details.

Emissions Data

500REOZJC 60 HZ. DIESEL INDUSTRIAL GENERATOR SET EMISSION DATA SHEET

	ENGINE INFOR	RMATION			
Model:	John Deere, 6135HFG75A		Bore:	132mm (5.2 in.)	
Nameplate BHP @ 1800 RPM:	755		Stroke:	165mm (6.5 in.)	
Туре:	4-Cycle, 6 Cylinder, Inline		Displacement:	13.5 L (824 cu. in	.)
Aspiration:	Turbocharged, Charge Air-Cooled				
Compression Ratio	16.0:1		EPA Family:	MJDXL13.5132	
			EPA Certificate:	MJDXL13.5132-0	09
			Tal	ble 1	
		1/4	1/2	3/4	Full
PERFORMANCE DATA:		<u>Standby</u>	Standby	<u>Standby</u>	<u>Standby</u>
Engine bkW @ Stated Load		141	282	422	563
Fuel Consumption (g/kWh)		228	225	207	200
Exhaust Gas Flow (m ³ /min)					97
Exhaust Temperature (°C)					524
			-	Table 2	
EXHAUST EMISSION DATA:			EPA D	2 Cycle 5-mode w	eighted
				0.12	
· · · ·					
NOx (Oxides of Nitrogen as NO2)				5.60	
HC (Total Unburned Hydrocarbons) NOx (Oxides of Nitrogen as NO2) CO (Carbon Monoxide) PM (Particulate Matter)				5.60 0.6 0.04	

TEST METHODS AND CONDITIONS

The emission data listed is measured from a laboratory test engine according to the test procedures of 40 CFR 89 or 40 CFR 1039, as applicable. The test engine is intended to represent nominal production hardware, and there is no guarantee that every production engine will have identical test results. The family parent data represents multiple ratings and this data may have been collected at a different engine speed and load. Emission results may vary due to engine manufacturing tolerances, engine operating conditions, fuels used, alternate test methods, or other conditions.

Data and specifications subject to change without notice.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2022 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

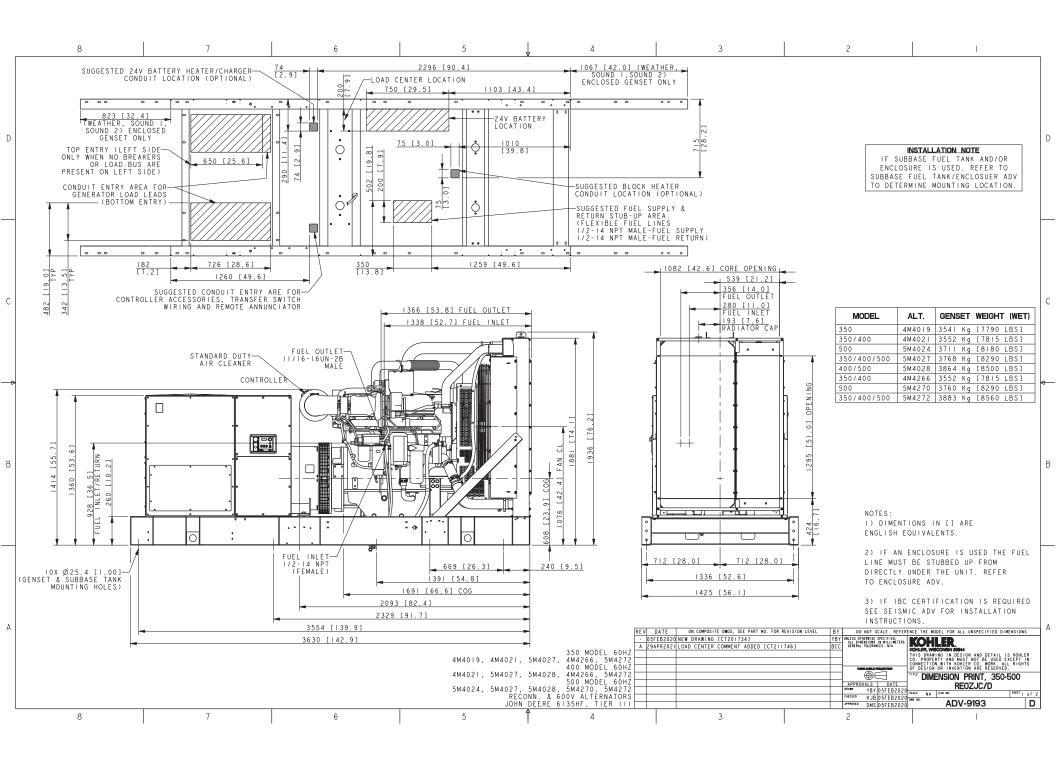
OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

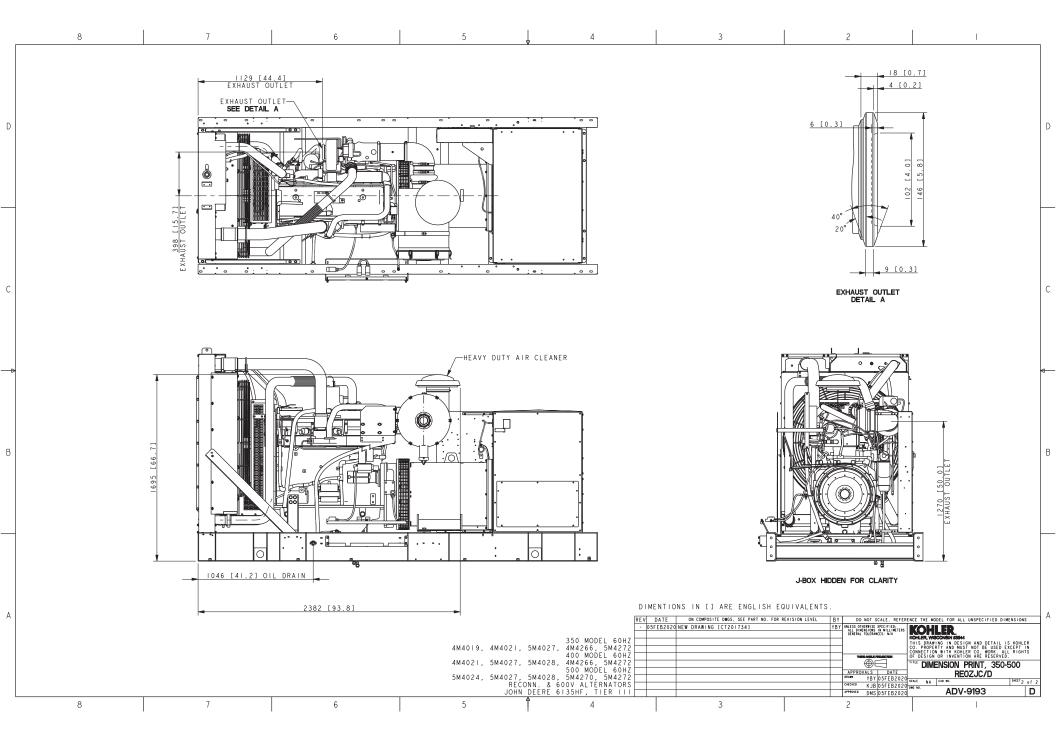
0

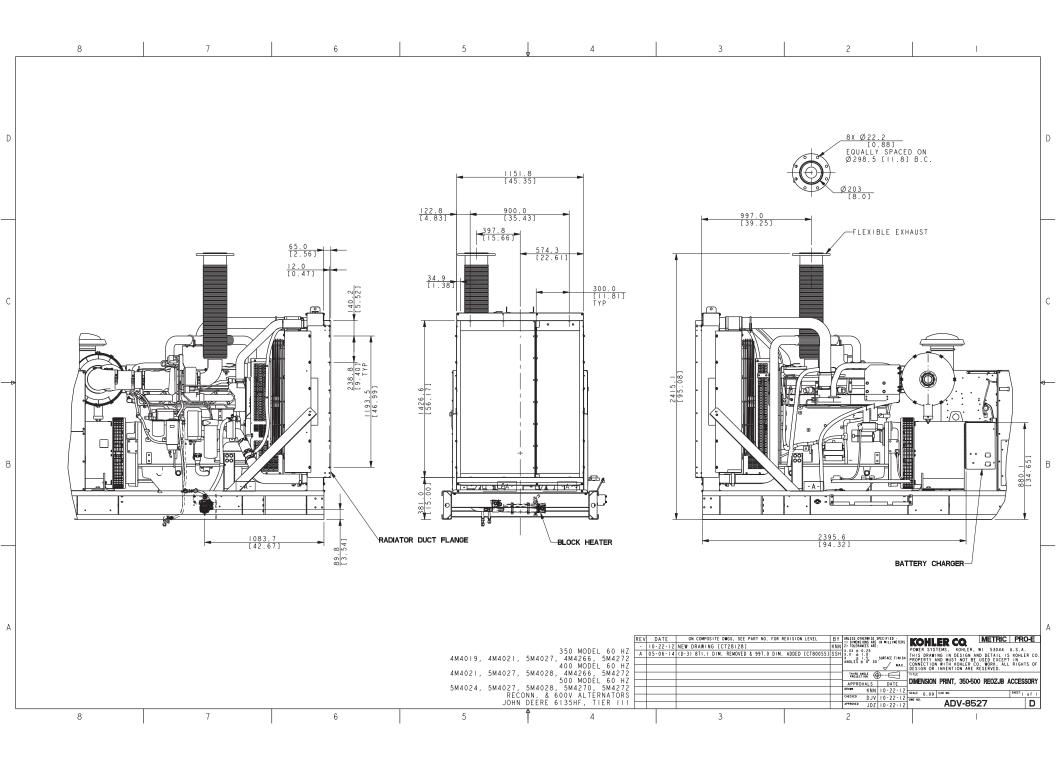
Certificate Issued To: Deere & Company (U.S. Manufacturer or Importer) Certificate Number: NJDXL13.5132-010	Effective Date: 08/09/2021 Expiration Date: 12/31/2022	Byron J. Bunker, Division Director Compliance Division	Issue Date: 08/09/2021 Revision Date: N/A
Model Year: 2022 Manufacturer Type: Original Engine Manufacturer Engine Family: NJDXL13.5132	Emis Fuel After Non-	ile/Stationary Indicator: Stationary sions Power Category: 560 <kw<=2237 Type: Diesel • Treatment Devices: No After Treatment Devices Installed after Treatment Devices: Electronic Control, Smoke Puff Limiter, No ment Device Installed, Engine Design Modification</kw<=2237 	on-standard Non-After

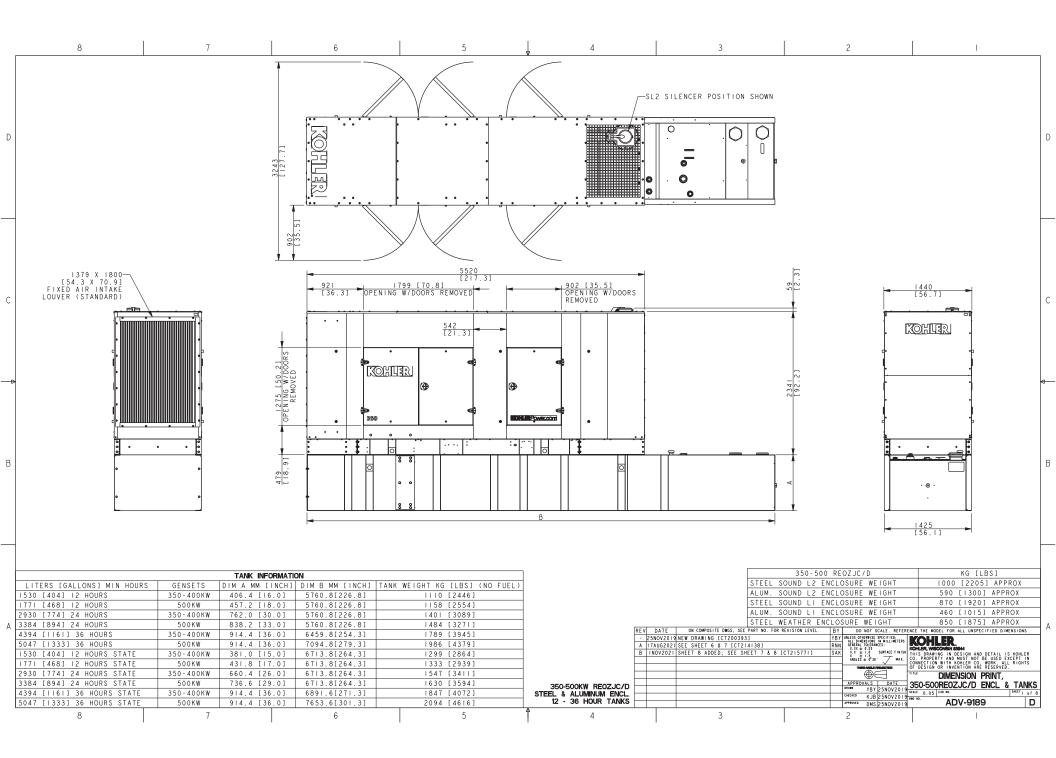
Pursuant to Section 111 and Section 213 of the Clean Air Act (42 U.S.C. sections 7411 and 7547) and 40 CFR Part 60, and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

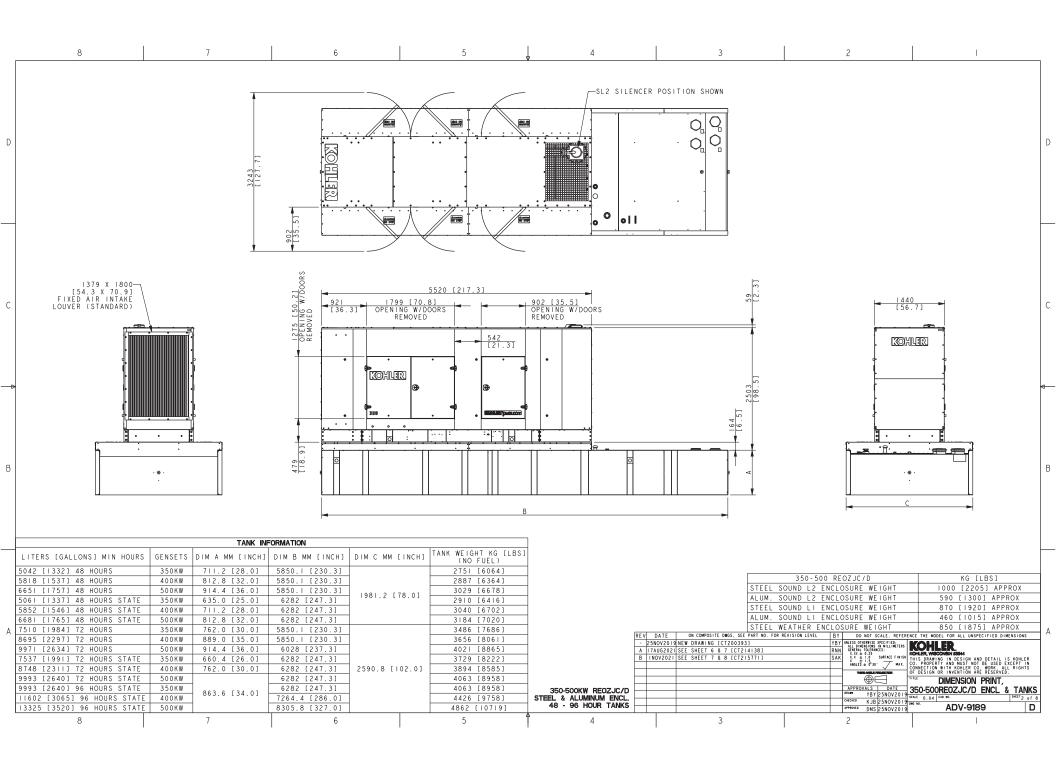
This certificate of conformity covers only those new compression-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60.

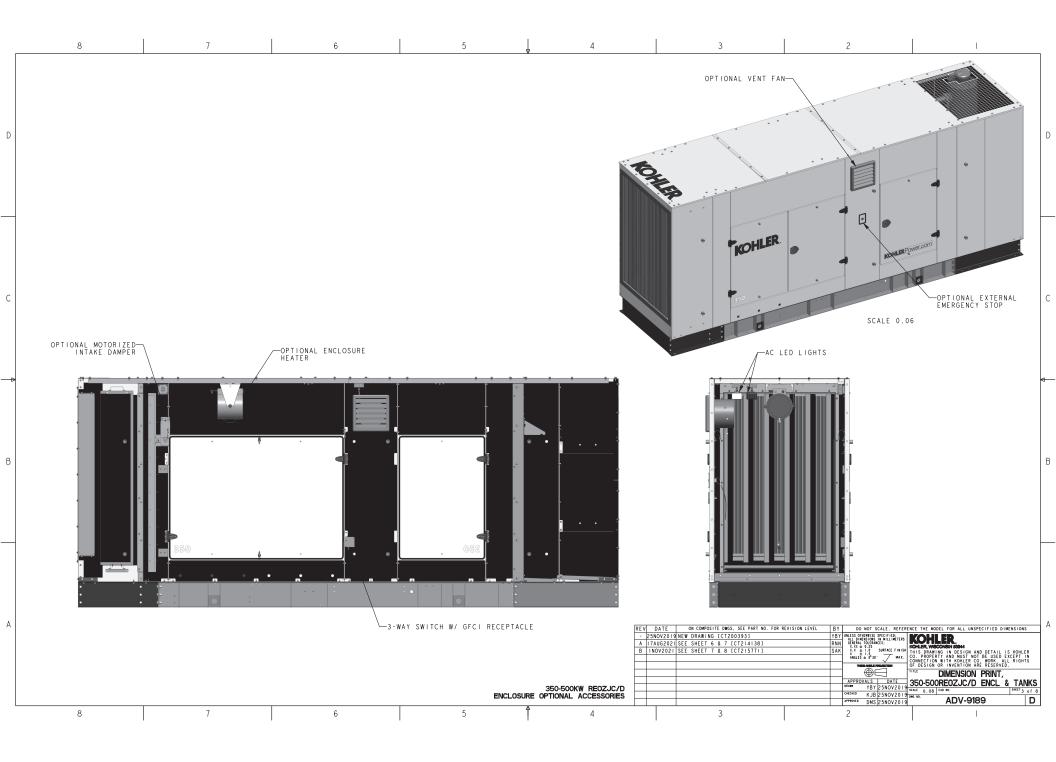

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

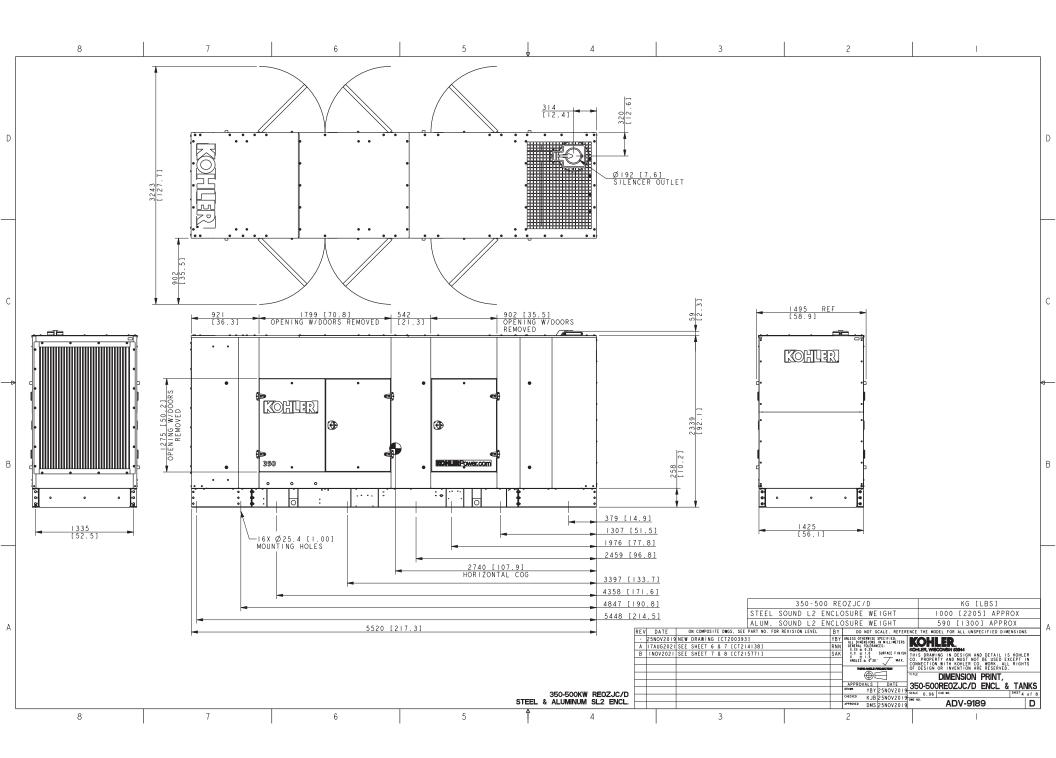

AL PROTES

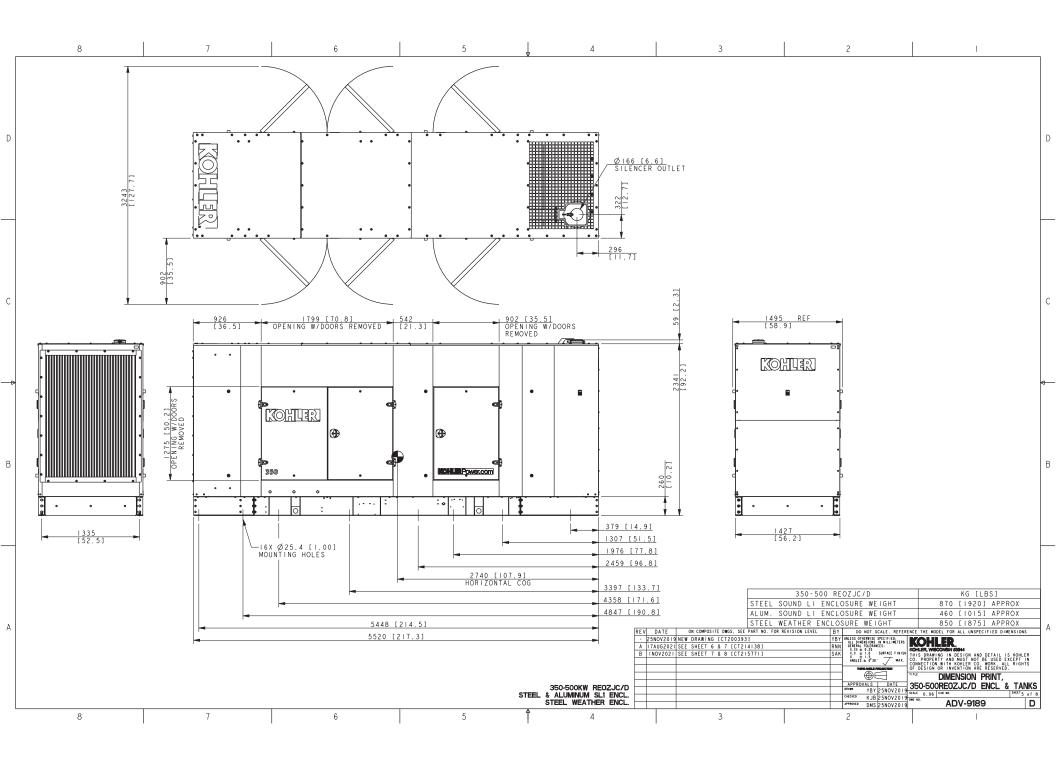

This certificate does not cover engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

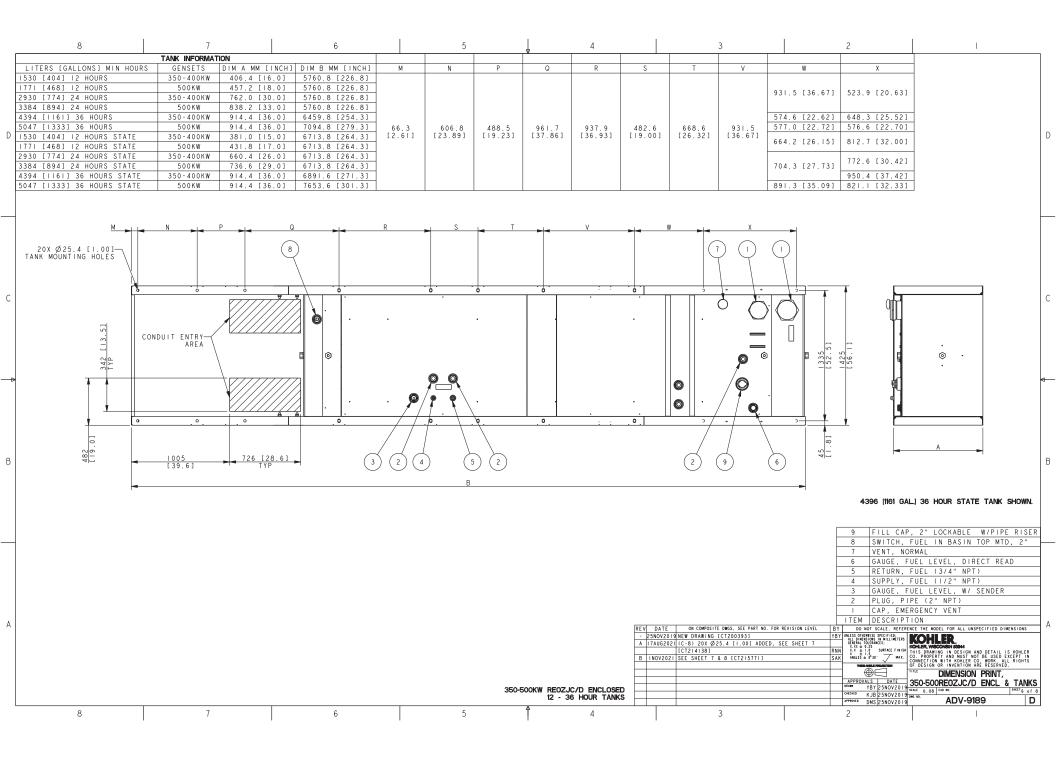


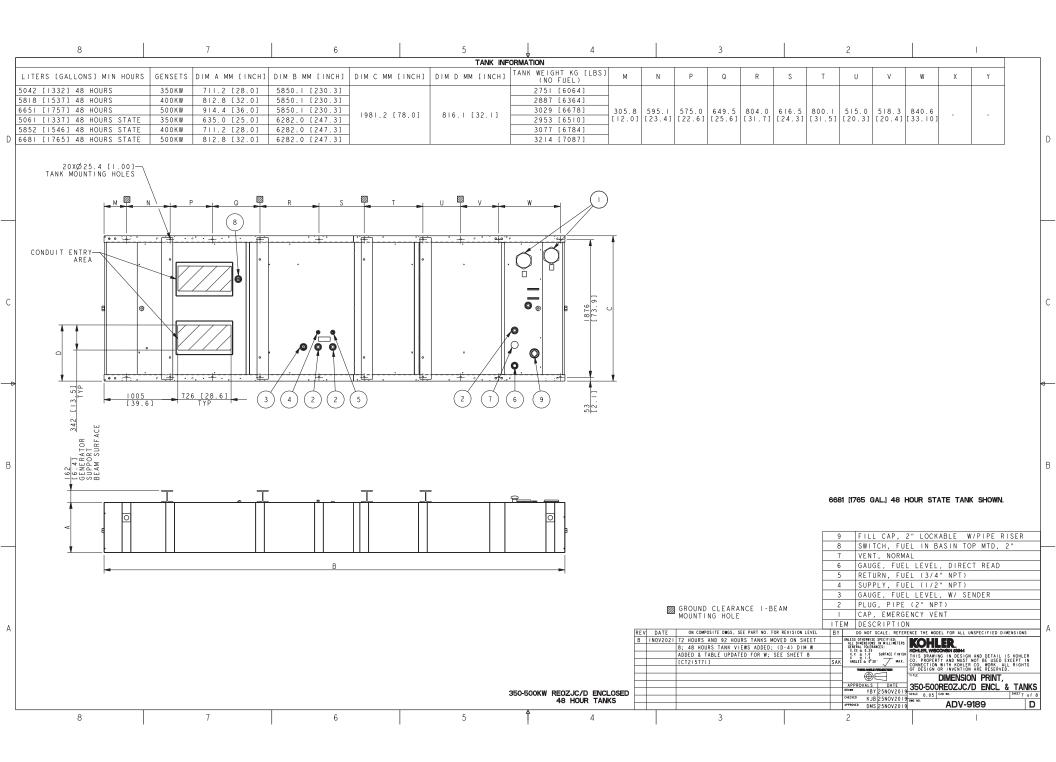

Dimensional Drawings

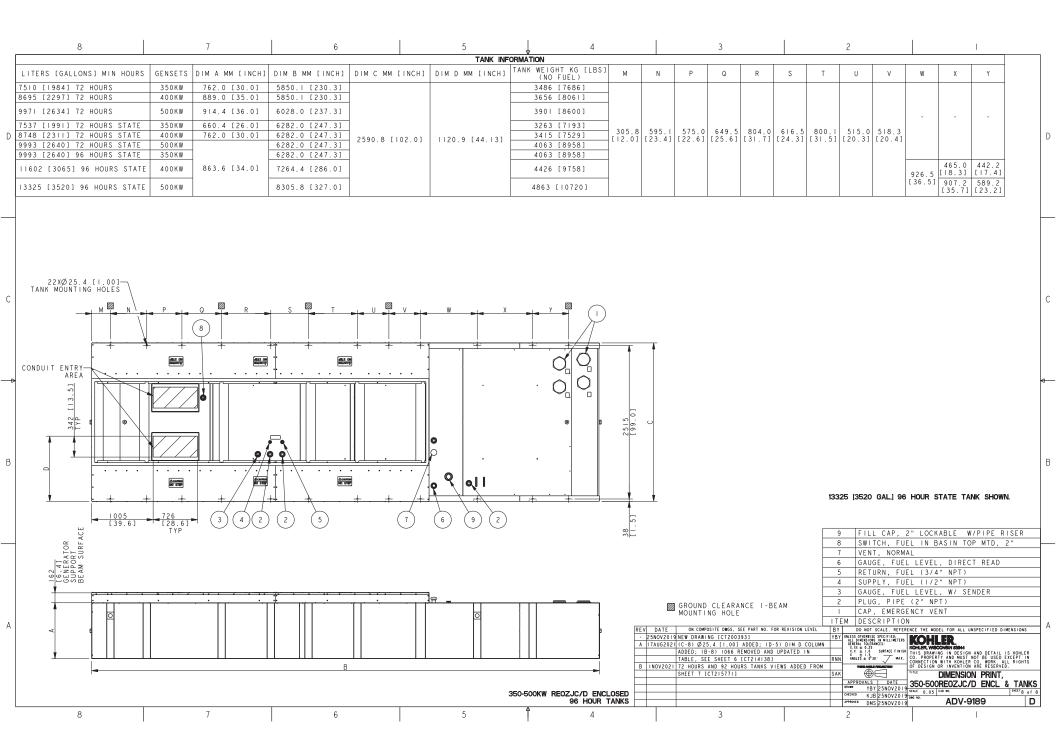


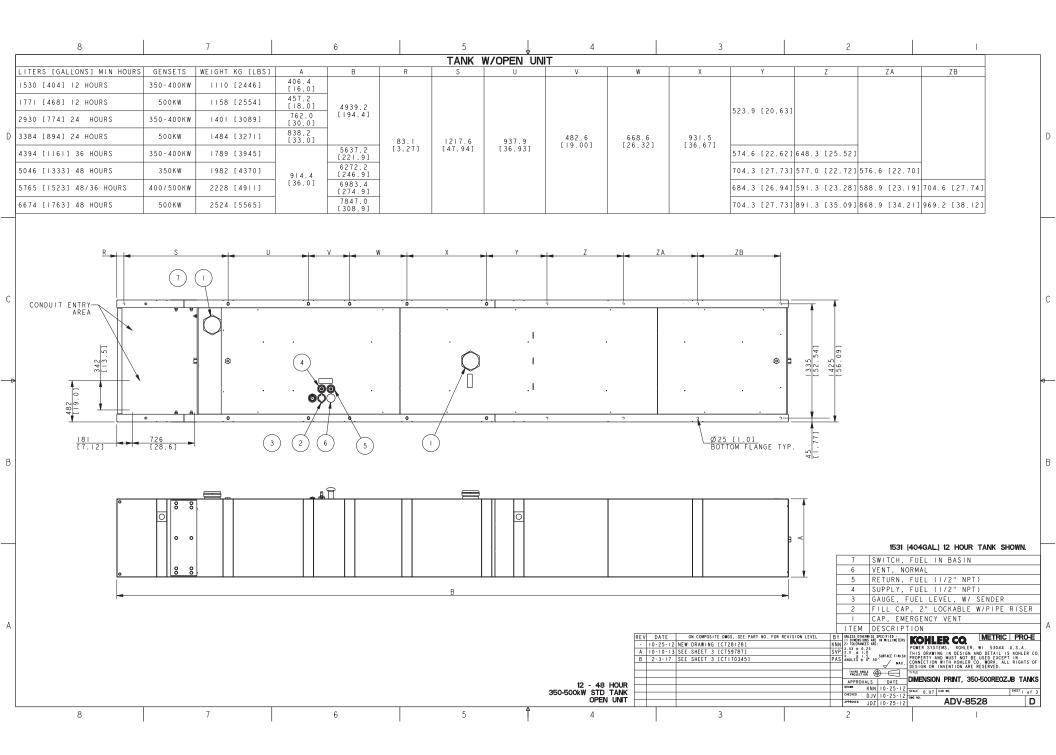


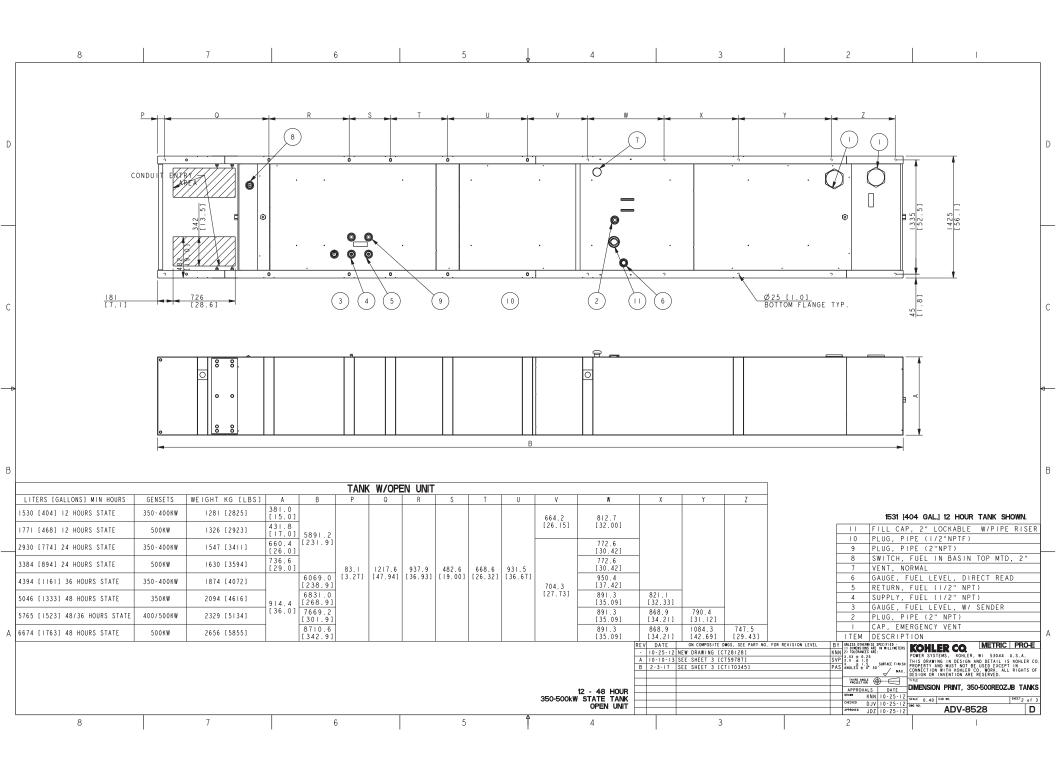


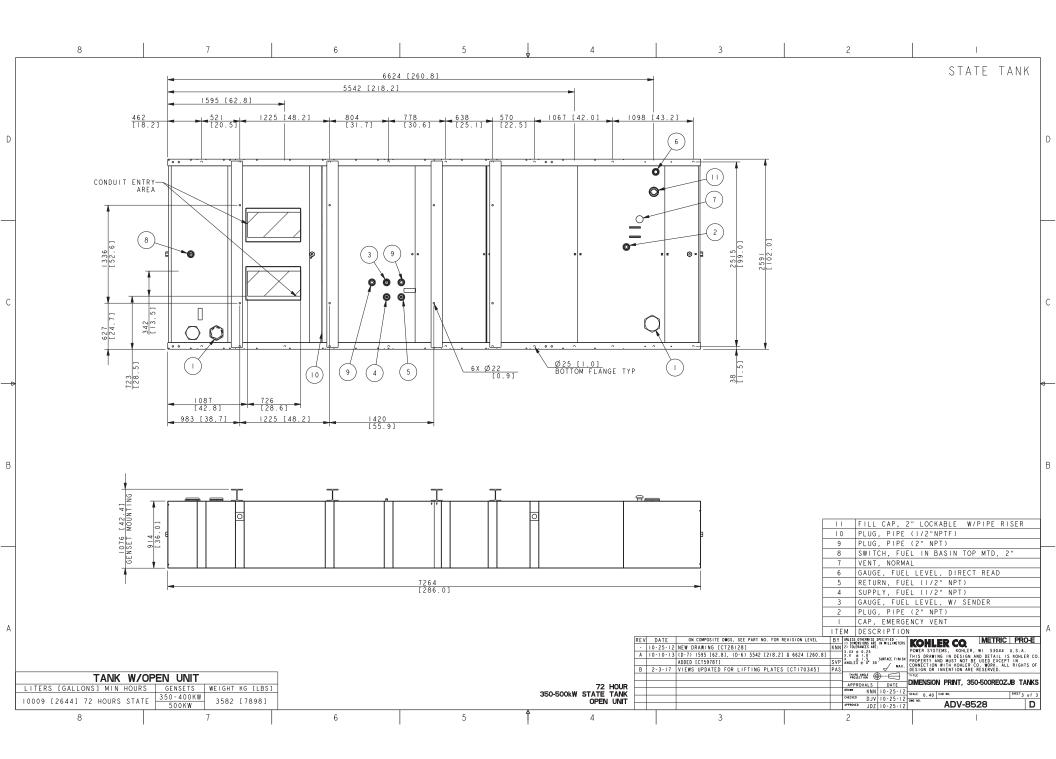


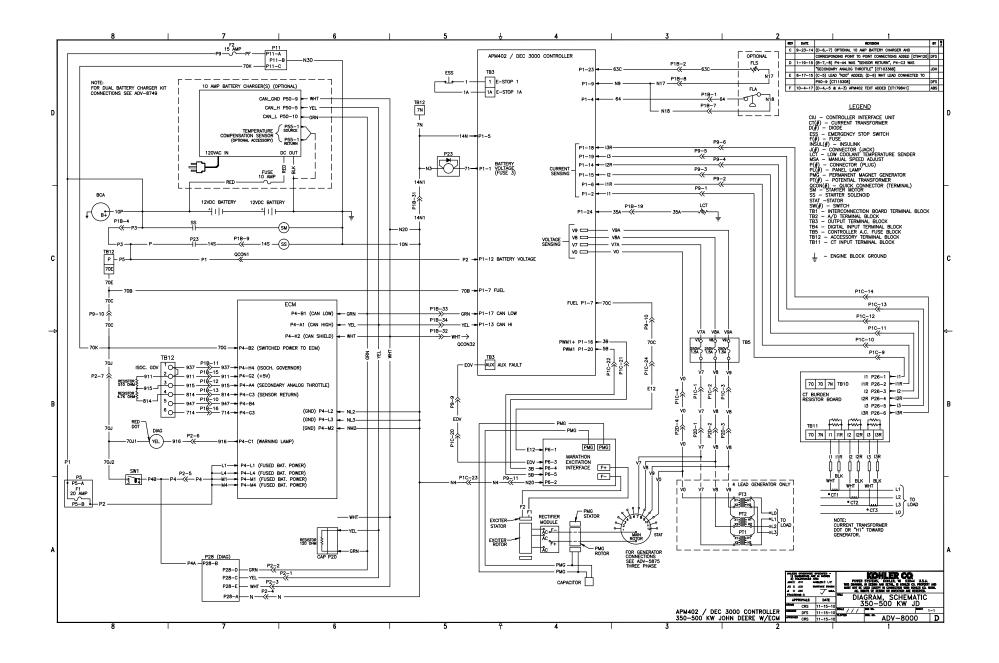


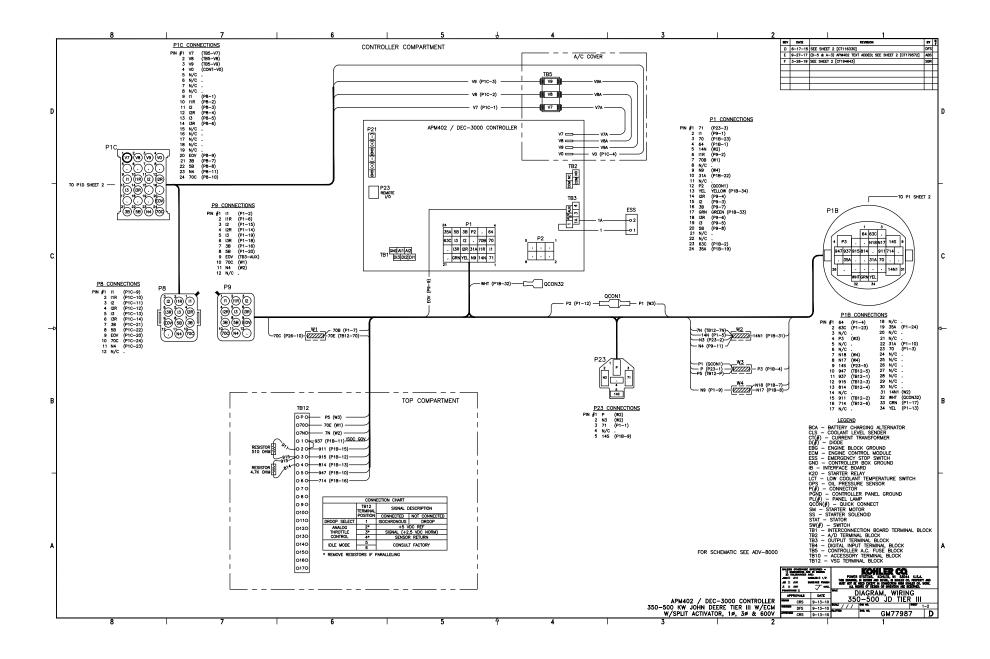


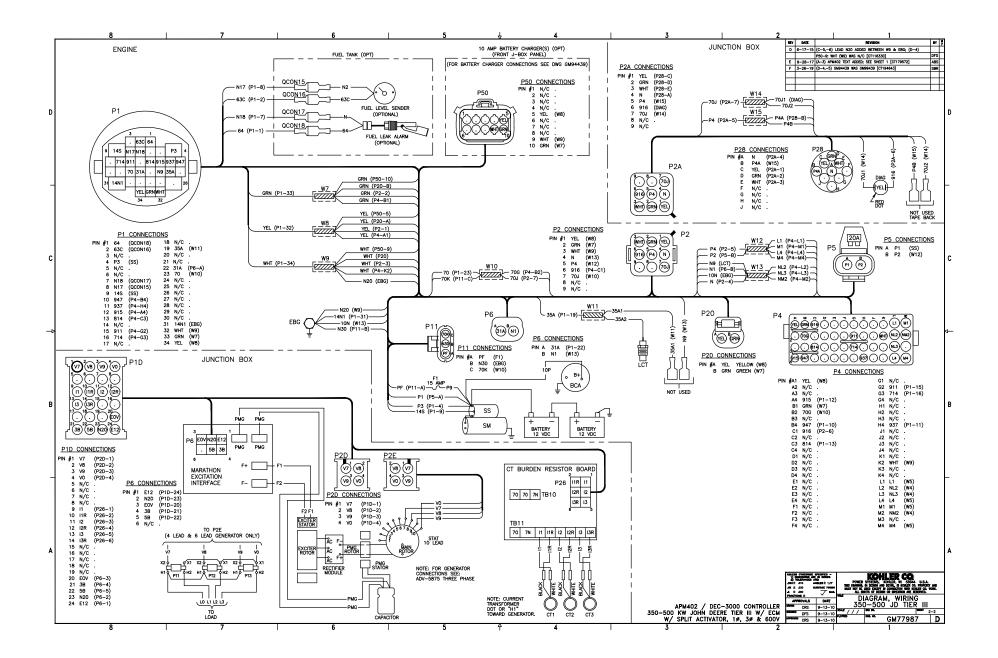


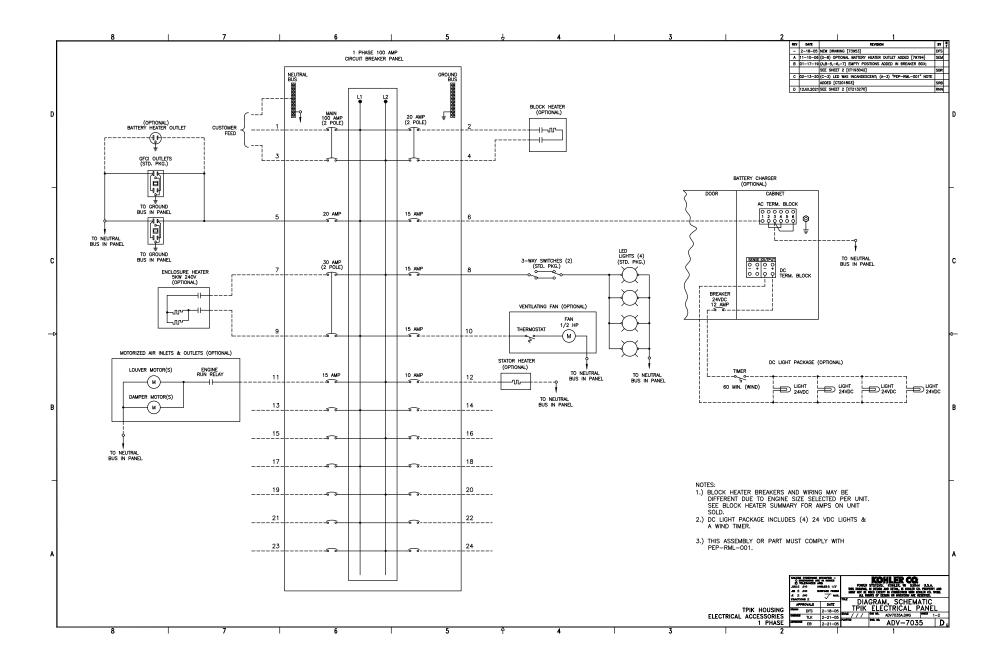


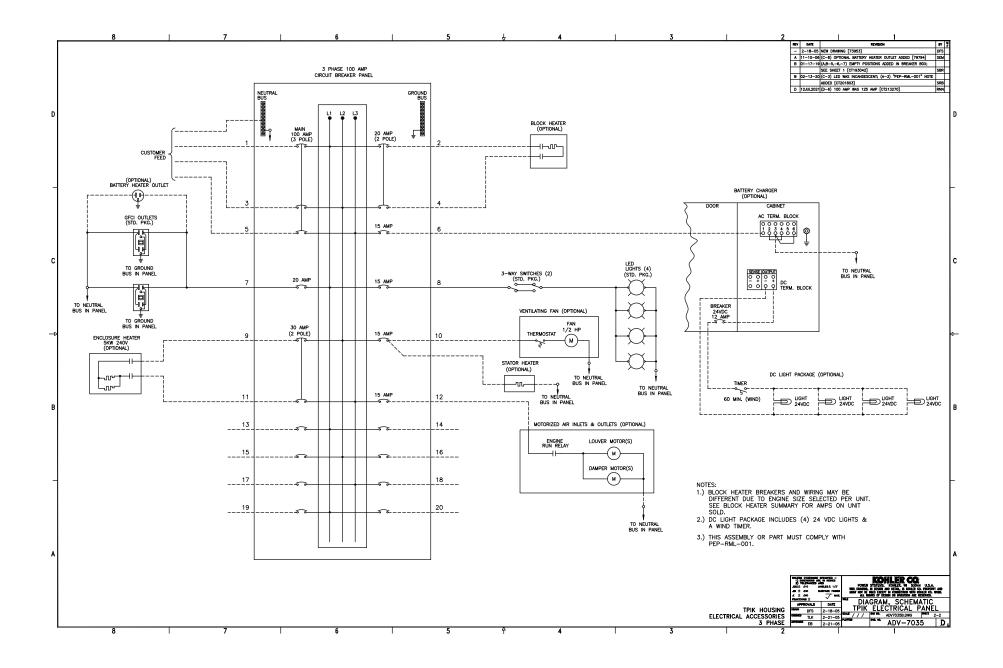


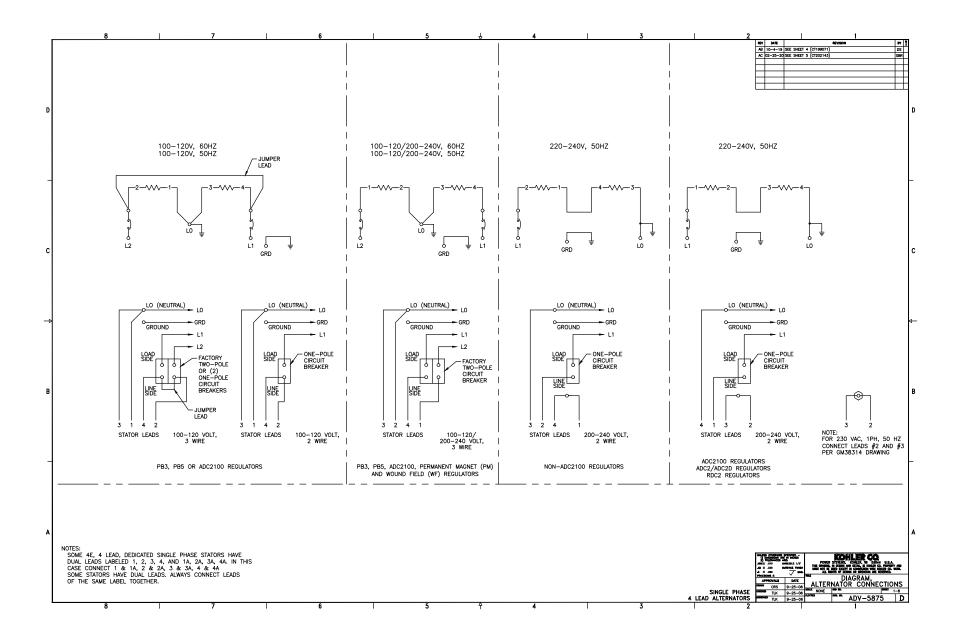


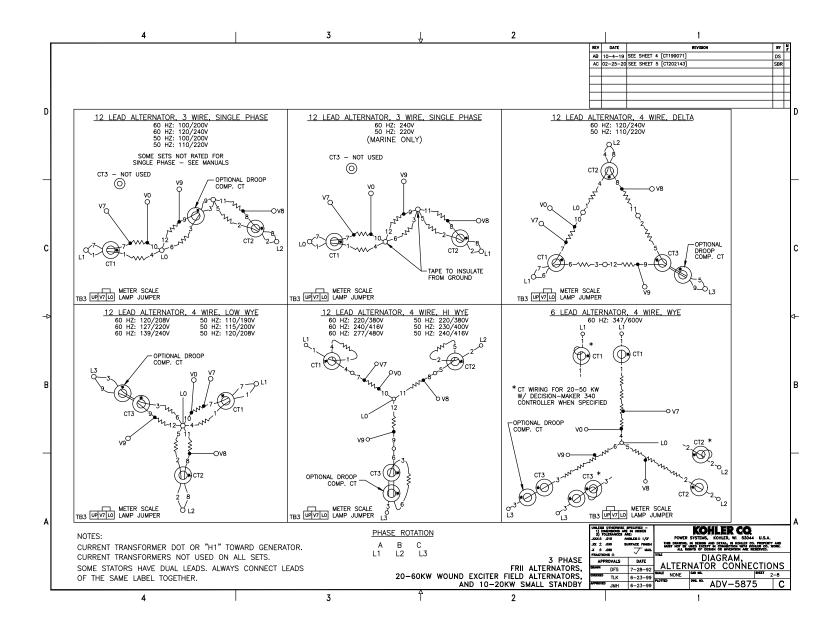


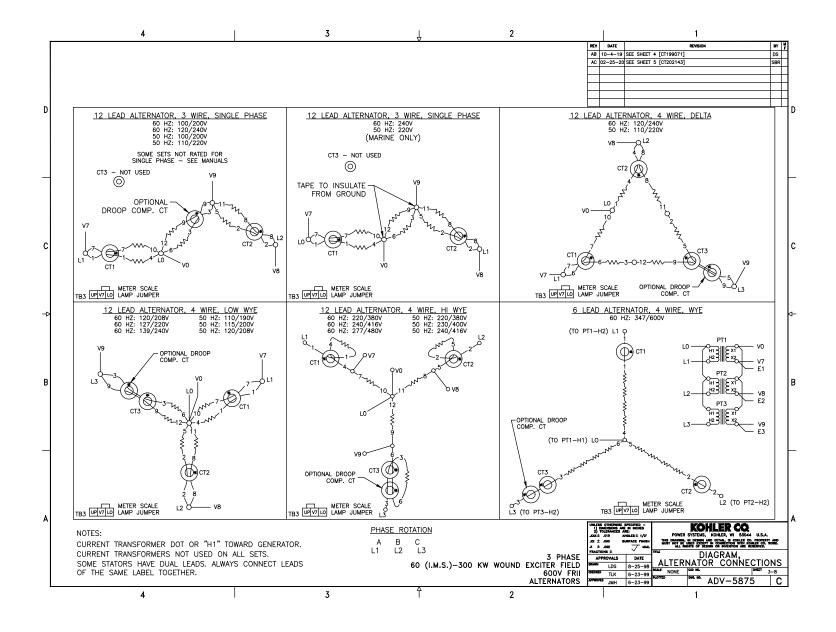


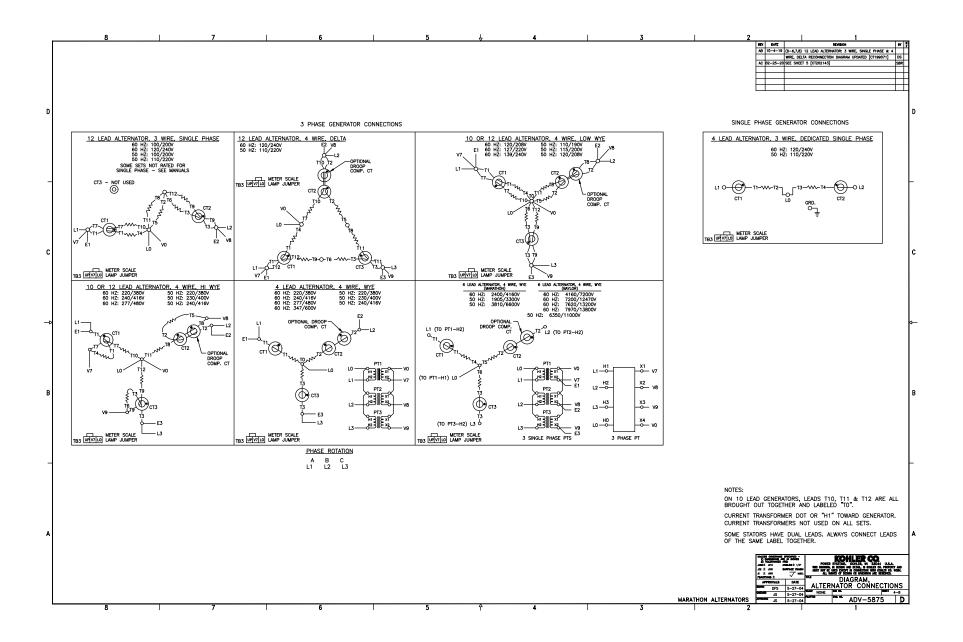


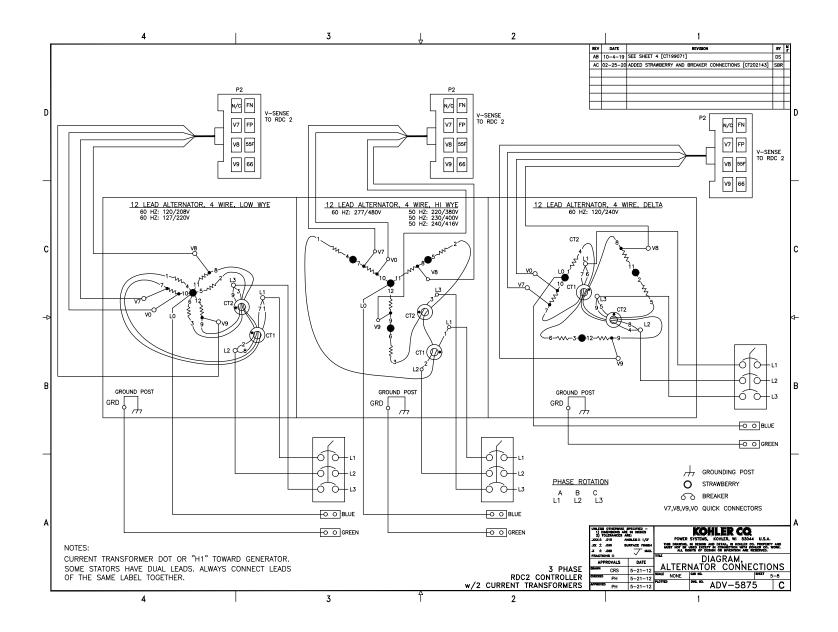

Wiring Schematics

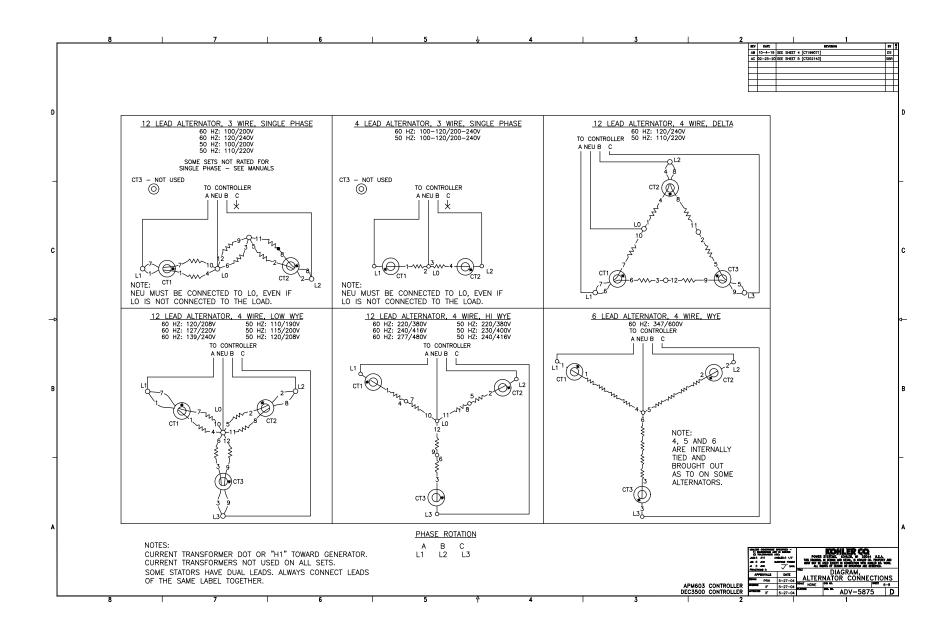


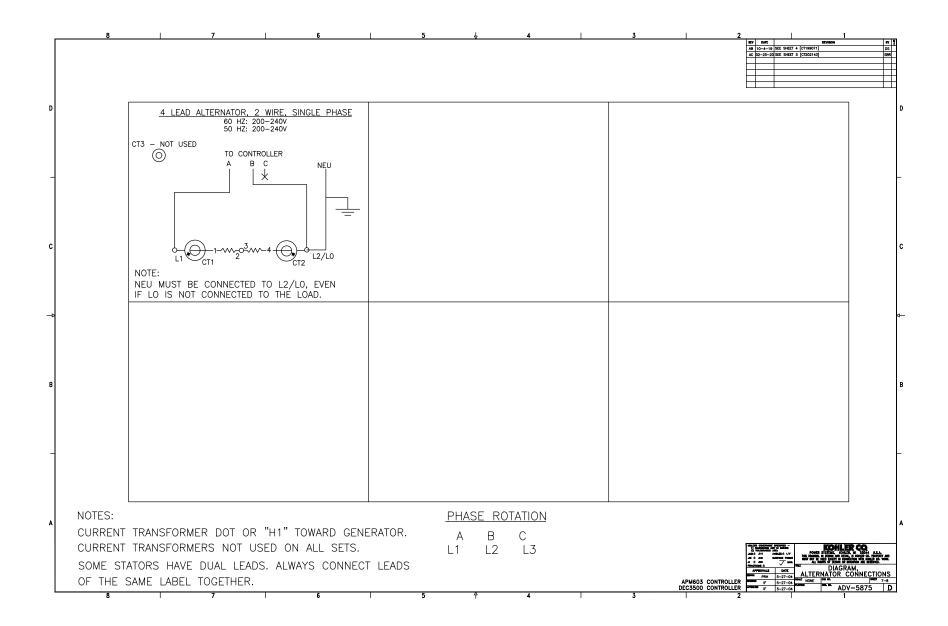


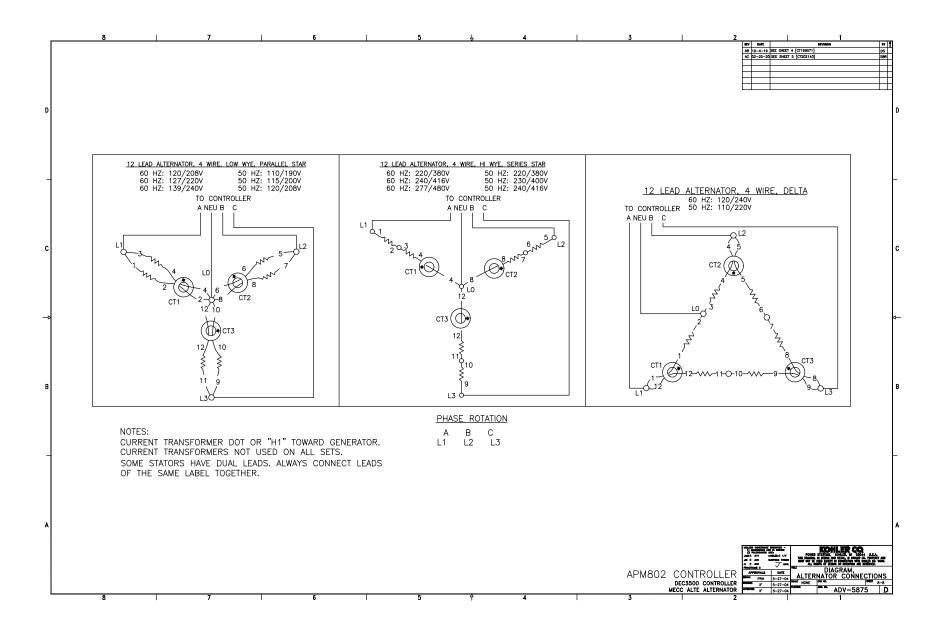


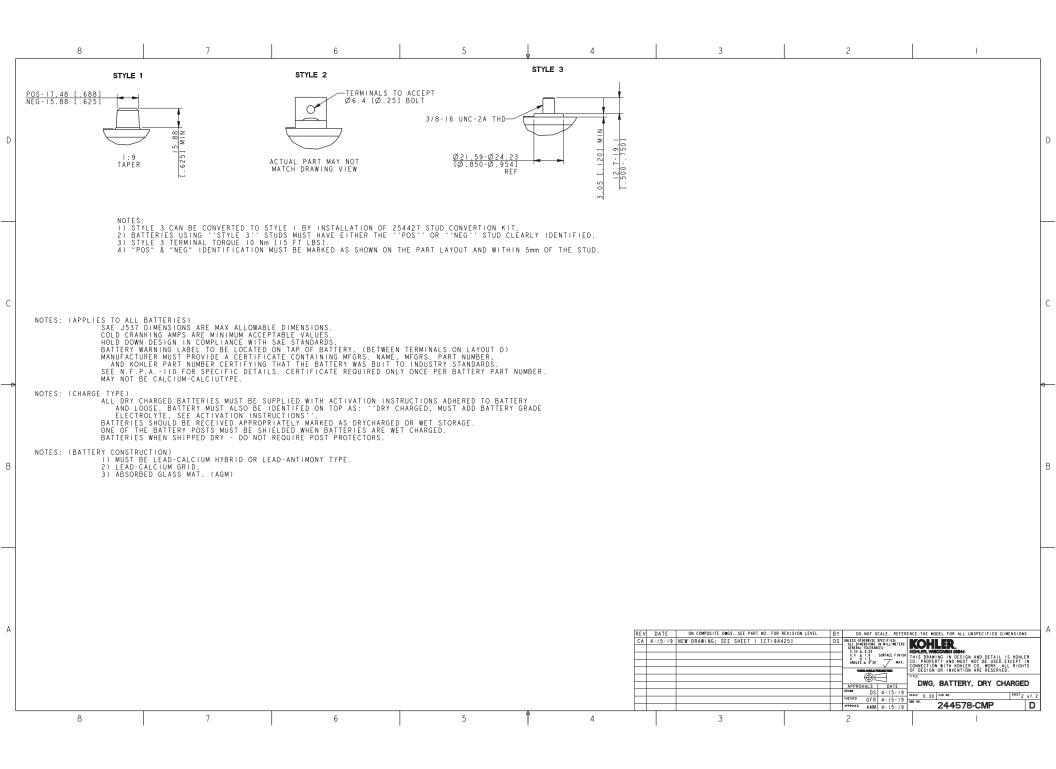




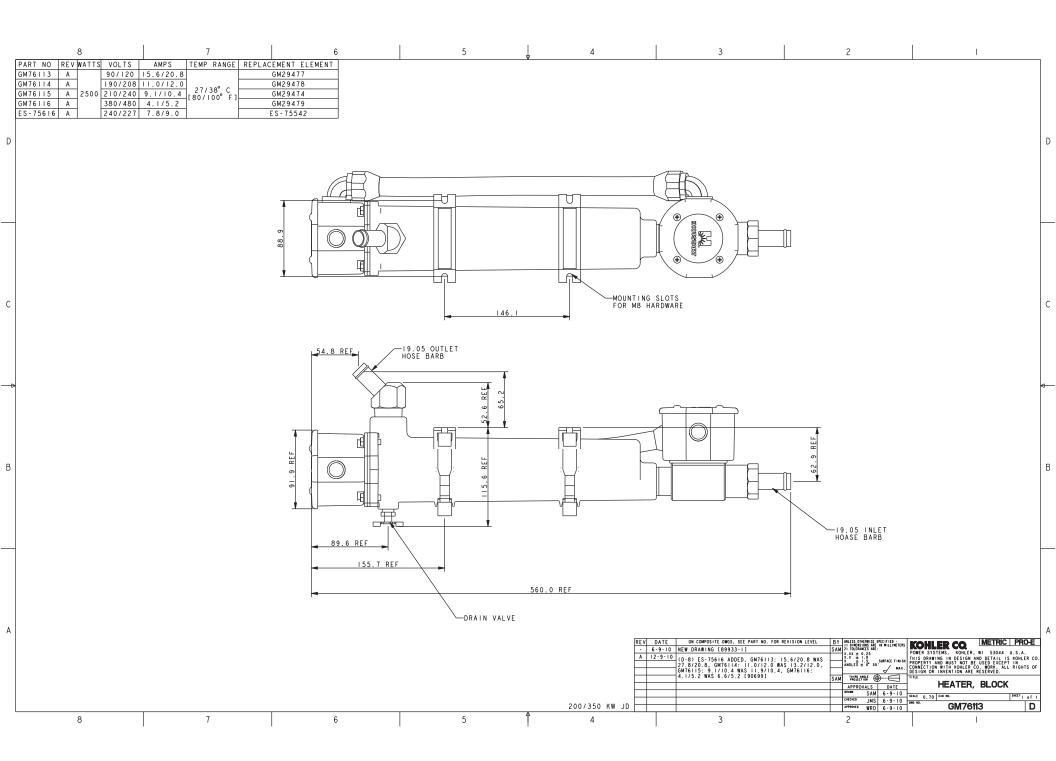


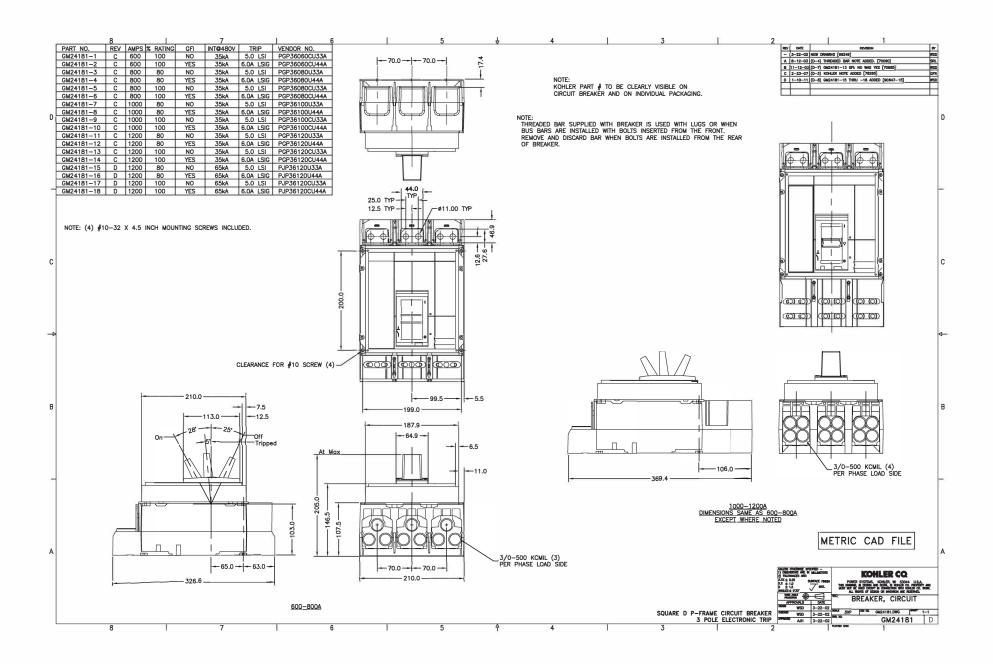






Miscellaneous


	8			7		6		5	Ļ		4			3		2	1	
PART NO	0. REV			SAE DIMENSION	·	VOLTAGE	COLD CRANKING AMPS AT 0°F	RESERVE CAP MINUTES AT 80°F		CHARGE TYPE	BATTERY	BCI GROUP					·	
244578	BE	L 333.5 [13.	131	W 181.1 [7.13]	H 	6	MINIMUM 700	275	/STYLE	DRY	SEE NOTE I		(M(2) -					
244750	BD	342.9 [13.	501	173.2 [6.82]	238.3 [9.38]	12	600	165	D/1	DRY	SEE NOTE I		-	-	L		< [₩] ►	
239102	ВК	198.1 [7.8		133.4 [5.25]	187.5 [7.38]	12	200	32	D/2	DRY	SEE NOTE I	_	-					
289515 291918	BC BC	<u>539.8 [2].</u> 333.2 [13.		282.7 [11.13] 173.0 [6.81]	276.4 [10.88] 239.8 [9.44]	12	1150	450	A/1 C/3	DR Y WE T	SEE NOTE I		-					
299981	BD	333.2 [13.		173.0 [6.81]	239.8 [9.44]	12	700	150	C/3	DRY	SEE NOTE I		-					D
254425		333.2 [13.		173.0 [6.81]	239.8 [9.44]	12	1000	200	C/3	WET	SEE NOTE I	_	-					
299982 324367	BC BM	333.2 [13. 208.0 [8.		173.0 [6.81] 179.4 [7.06]	239.8 [9.44] 196.9 [7.75]	12	950 675	200	C/3 C/1	DR Y WE T	SEE NOTE I		-	т				
324368	BC			166.9 [6.57]	205.2 [8.08]	12	675	90	C/I	DRY	SEE NOTE I		-					
324586		330.2 [13.		173.0 [6.81]	239.8 [9.44]	12	950	185	C/3	WET	SEE NOTE 2		-					
324587 256984	BT f	330.2 [13. 273 0 [10		173.0 [6.81]	239.8 [9.44] 228.6 [9.00]	12	950 650	200	C/3 D/1	DRY WET	SEE NOTE 2	31	-					
225289	BR	273.0 [10.		173.0 [6.81]	228.6 [9.00]	12	650	130	D/1	DRY	SEE NOTE I	24	-	<u>*</u>				
345197	BS	273.0 [10.		173.0 [6.81]	228.6 [9.00]	12	510	80	E71	WET	SEE NOTE 2		-			CONSTUCTION ON DO	TTON	
354147 354148	BT	330.2 [13.		173.0 [6.81]	239.8 [9.44]	12	700	170	C/3 C/3	WE T DR Y	SEE NOTE 2	31	-		ALIERNAIE	CONSTUCTION ON BO F BATTERIES ACCEPT.	ABLE	
345309	BR	219.2 [8.6		153.9 [6.06]	212.9 [8.38]	12	525	-	E / I	WET	SEE NOTE I	55	-					
GM22348		525.3 [20.		220.5 [8.68]	251.0 [9.88]	12	1000	320	A/1	DRY	SEE NOTE I	0.0	-					
GM22349 GM34399		527.1 [20. 527.1 [20.		282.4 [. 2] 282.4 [.12]	276.4 [10.88] 276.4 [10.88]	12	1150	400	A/I A/I	DRY WET	SEE NOTE I	8D 	-					
GM48784		208.0 [8.		173.0 [6.81]	196.9 [7.75]	12	525	70	D/1	WET		26	-				LAYOUT B	С
GM75512	BT (129.0 [5.06]	223.0 [8.81]	12	500	85	D71	WET		51	-		LAYOUT A			
107020007		527.1 [20. 527.1 [20.		216.0 [8.50] 216.0 [8.50]	258.0 [10.16] 254.0 [10.0]	12	1050	290	A/I A/I	WE T AGM	SEE NOTE 3	4 D 4 D	-		4 D	×O	Q	
GM106681		☐ 260.0 [IO.		171.0 [6.75]	208.0 [8.19]	12	690	105	D/I	WET	-	34	4.29				Ē	
GM106375		330.2 [3.		171.0 [6.75]	239.8 [9.44]	12	925	180	C/3	WET	SEE NOTE 2	31	3.31					
GM106373 GM106377		260.0 [10. 527.1 [20.		171.0 [6.75] 279.0 [11.0]	229.0 [9.00] 254.0 [10.00]	12	650 I 400	95 380	D/I A/I	WET	SEE NOTE I SEE NOTE I	24 80	4.71 2.53					
GM106369		208.0 [8.1		172.0 [6.77]	200.0 [7.87]	12	500	95	D/1	WET	-	26	5.85		8 D	0	Q	
[▶] GM106374	· - [237.0 [9.3	21	125.0 [4.94]	220.0 [8.66]	12	500	70	D/I	WET	-	51	5.00					4
NOTE: D	IMENSION	SIN[]ARE	ENGLIS	SH EQUIVALENTS.				INDICATES PART	NUMBERS	AFFECTE	D BY LATEST DF	RAWING	REVISION					
															LAYOUT C		LAYOUT D	
																	24	
5															OO 31	01		B
															LAYOUT E			
_																		
															55			
															01	⇔ O		
														I	L			
																		^
`												REV DAT BY 5-6-			ART NO. FOR REVISION LEVEL D CRANKING AMPS IIIO	BY DO NOT SCALE. REFER	RENCE THE MODEL FOR ALL UNSPECIFIED DIMENSIONS	
											[WAS 1100 [C	1460531		UNLESS OTHERWISE SPECIFIED: ALL DIMENSIONS IN NILLIMETERS GENERAL TOLERANCES; $x.xx \pm 0.25$ $x.x \pm 1.5$ $x \pm 1.5$	KOHLER, WECCHEN SOM	
											-	vn 4 13	GM106377, G	1106369 & G	MI06374 ADDED; (D-3)	X ± 1.3 ANGLES ± 0"30'	KOHLER, WHOCHEN 83044 THIS DRAWING IN DESIGN AND DETAIL IS KOHLE CO. PROPERTY AND MUST NOT BE USED EXCEPT I CONNECTION WITH KOHLER CO. WORK. ALL RIGHT OF DESIGN OR INVENTION ARE RESERVED.	N S
											-		(D-8) 32458	\$ 256984	Ω) COLUMN ADDED; VOIDED; (C-8)		TITLE	
														8,7,6,5,4)	VIEWS & NOTES MOVED	APPROVALS DATE	DWG, BATTERY, DRY CHARGED	
											-				DED [CT194425]	DS CHECKED EB 4-15-19 APPROVED RAD 4-15-19	0,00	D
L	8			7		6		5	Ť		4			3		2		
	•	I			I		I	-	1			I			I	-	1	



	8 7	6	5	4		3		2		
D	OVERVIEW: THE AUTOMATIC MULTI-LEVEL FLOAT/ EQUALIZE CHARGER SPECIFIED E CHARGE ENGINE STARTING BATTERIES EITHER INDEPENDENT OR IN COT ENGINE DRIVEN CHARGING SYSTEM. BATTERY TYPES TO BE CHARGED: LEAD ACID AGM GEL CELL HIGH PERFORMANCE AGM FLOODED	BELOW IS INTENDED TO NJUNCTION WITH AN		PACKAGING LABEL: THE PACKAGING LABEL KOHLER P/N DESCRIPTION - BATTE MFG. MODEL NO. MFG. PART NUMBER DATE CODE WARRANTY: 2 YEAR FROM DATE OF	RY CHARGER		MATION:			D
2	NICKEL CADMIUM (NiCd) INPUT AC: INPUT VOLTAGE: 90-265V SINGLE PHASE INPUT FREQUENCY: 47-63 Hz INPUT LEAD: APPROXIMATELY I.8M (72") (REF) TYPE SJTOW -40°C TO 105°C UL R TERMINATED IN PRE-MOLDED UL RATED 3 PRONG NEMA 5-15 MALE AC F	ATED WIRE AND INSULATION. PLUG.		14.1 6 12	<u>253.</u> 225.2	4			73.7	
	DC OUTPUT: 10A @ 12V 10A @ 24V VOLTAGE REGULATION: +/-1% (VOLTAGE AT EACH STAGE IS TOPOLOGY I OUTPUT LEAD: APPROX. 1.8M (72") (REF) TYPE SJTOOW -40°C TO 105°C UL RATED AND BLACK WIRE INSULATION. TERMINATED IN 9.5 mm (REF) RING S FUSES: THE FUSE MUST BE LOCATED APPROXIMATELY 6" FROM RING TERMINAL 20A ATC	WIRE WITH RED STYLE TERMINALS.			()]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	Electronic de la construir de	<u>4X Ø6.6</u> — MATES WITH GM99421			c
~ 	ENVIRONMENTAL: STORAGE TEMPERATURE RANGE: OPERATING TEMPERATURE RANGE: HUMIDITY: SALT SPRAY TESTING - ASTM BII7 CORROSIN RESISTANT FROM GASSING OF BATTERIES REVERSE POLARITY PROTECTION: THE CHARGER SHALL SUSTAIN NO DAMAGE WHEN INCORRECTLY CONNECTED TO THE BATTERY IN REVERSE ORIENTATION.		м	MATES WITH GM94422	P		UTPUT LEADS SEE SPECIFICA D	TIONS)		
В	MOUNTING: 4 NON-THREADED THROUGH HOLES FOR MG FASTENERS TO PASS THOUGH ENCLOSURE: SHALL PROTECT THE CHARGER COMPONENTS FROM RAIN, SNOW, DUST AN UNINTENTIONAL INPACTS. ALL INTERNAL COMPONENTS PROTECTED FRO INDICATORS: POWER: INDICATES THE ACCEPTABILITY OF AC INPUT TO THE CHARGE! COMMUNICATION: INDICATES THE STATE OF THE COMMUNICATION SYSTE TEMPERATURE COMPENSATION: INDICATES THE STATE OF THE TEMPERA' COMPENSATION SUBSYSTEM WHEN INSTALED	OM WATER DROPLETS. R EM	(SE)	INPUT LEADS		BLK	∕—FUSE	IFICATIONS)		В
	VOLTAGE OUPUT: INDICATES THE STATE OF THE BATTERY AND CERTA DOCUMENTATION: THERE SHALL BE AN INSTALLATION / OPERATIONAL MANUAL SUPPLIED PER KOHLER SUPPLIED ARTWORK. CERTIFICATIONS (US AND CANADA): ULI236 CSA - C22.2 NO 107.2-01 FCC- TITLE 47, PART 15 CLASS A CE EN 61000-6-2	IN FAULT CONDITIONS.								
A	CEC AND DOE NFPA-IIO LEVELI (WHEN SUPPORTED WITH APPLICABLE KOHLER CONTRO IBC PRODUCT LABELING: THE LABELATTACHED TO THE CHARGER SHALL HAVE THE FOLLOWING IN UL LISTING KOHLER PART NUMBER DESCRIPTION OF ALL INDICATOR OUTPUT CURRENT AND VOLTAGE INPUT VOLTAGE AND FREQUENCY			COM PIN I N/C 2 ID SEL I 3 ID SEL 2 4 N/C 5 CAN-H 6 CAN-H 8 ID SEL 1 RTN 8 ID SEL 2 RTN 9 CAN-GND 10 CAN-L	OM	TC TC TC TC TC TC TC TC TC TC	SENSOR W2	APPROVALS DATE	KOHLER CO. METRIC P FORE SYSTERS, RONLER, WI S3344 U.S FORESTRIKS, RONLER, WI S3344 U.S FORESTRIKS, RONLER, ON BORNAL RIVEROUSE S000000000000000000000000000000000000	AMP
	8 7	6	5	<u>م</u>		3		Сили SAM 9-22-14 сиссию SAM 9-22-14 лирочто AGT 9-22-14 2		D

	8		7 6	5		4	3		2	1	
	ITEM PART NO	QTY									
4922-KAI			ASSY BATTERY CHARGER 12/24V-10A								
	I GM78810 2 GM87448	1	BRACKET, BATTERY CHARGER CHARGER, BATTERY								
	3 MI25A-06-80		WASHER, PLAIN 6.4 ID X 12.0 OD								
	4 M6921-06016-60		SCREW, HEX FLNGE M6XI6MM FLLY THRD JS500								
	5 M6923-06-80		NUT, HEX 6MM								
	6 M933-06030-60	4	SCREW, HEX CAP								
922-KA2		<u> </u>	BATTERY CHARGER, FLOAT, 12/24V-10A								
	I GM78810		BRACKET, BATTERY CHARGER								
	2 GM87448 3 MI25A-06-80		CHARGER, BATTERY WASHER, PLAIN 6.4 ID X 12.0 OD								
	4 M6921-06016-60		SCREW, HEX FLNGE M6X16MM FLLY THRD JS500								
	5 M6923-06-80		NUT, HEX 6MM								
	7 M933-06030-60	8	SCREW, HEX CAP								
	8 GM95050	1	HARNESS, Y								
THIS IS	S AN AUTOMATED TABLE.	ALL UP	PDATES MUST BE MADE IN THE ASSEMBLY.				and a second				
				3 d BATTERY		1	ASEMBLE TO	BATTERY	2		
							NOTE: FOR PROPER AS on composite dwss. see part no. fo w drawing ictips3033				
					0.4.7.7	ERY CHARGER KIT			APPROVED AGT 10-1-14	GM94922	
					DAII	ENT CHARGER NTT			AG1 10-1-14	010194922	2

		8			7	6	5	Ļ	4		3		2		I	
		ITEM PART	NO	QTY	DESCRI		_	*]
(GM75809-KB	1 25452 000	7.5 (0 0057	BASE GROUP, BLOCK HE HOSE, COOLANT	ATER										
		I 25452-000 2 X-6367-I		9.09FT	HOSE, COOLANT 44"		-									
		3 X-6367-9		i	HOSE, COOLANT 65"		-						5			
	[4 274431		I	BRACKET, SUPPORT								∇			
		5 279047		1	TAG, INSTRUCTION											
D		6 GMI9666 7 GM39752		2	VALVE, SHUTOFF (3/4- TAG, HANG	14NP1)				K.		(interest	4 1			D
		8 MI25A-06-	80	4	WASHER, PLAIN 6.4 ID	X 12.0 OD			A Sola	-		S los		N. C. TPA		
	[9 MI25A-08-		I	WASHER, PLAIN 8.4 ID					part of the second seco			E			
		10 M125A-10- 11 M6923-06-		2	WASHER, PLAIN 10.5 I NUT, HEX 6MM	D X 20.0 OD			1 Cit	SEE DE						
		12 M6923-08-		4	NUT, HEX 8MM			ALL P			\sim			1.1.1		
		I3 M933-0602		4	SCREW, HEX CAP							REL				
		4 M933-0802		I	SCREW, HEX CAP							and the second sec		* -		
		15 M933-1002	5-60	2	SCREW, HEX CAP									1		
		16 X-206-6 17 X-206-9		3	PIPE (3/4"NPT X 3.50 PIPE (3/4"NPT X 1.38									-	SEE DETAIL B	
		18 X-215-2		2	ELBOW, PIPE (90 DEG			F								
		19 X-426-12		4	CLAMP, HOSE, .69/1.2					P		5 4 2	SON 1/1			
		20 X-582-8		2	CONNECTOR, HOSE + VI											
Ŀ		21 X-672-20		I	CLAMP, INSULATED, I.					· · ·				- E E		
- H	GM75809-KAI	22 GM76113		1	BLOCK HEATER, 2500W, BLOCK HEATER	90/120V IPH			TE N	1				· ccc		С
	GM75809-KA2	22 0110113		1	BLOCK HEATER, 2500W,	190/208V IPH		Car			_					
		22 GM76114		I	BLOCK HEATER											
(GM75809-KA3				BLOCK HEATER, 2500W,	210/240V IPH		The US		0000						
H		22 GM76115		1	BLOCK HEATER	200740017 1011	-	22								
H	GM75809-KA4	22 GM76116		1	BLOCK HEATER, 2500W, BLOCK HEATER	300/400V IPH	-	$\left(\begin{array}{c} \mathcal{U} \\ \mathcal{V} \end{array}\right)$					A WAT	T		
F	THIS	IS AN AUTOMATE	D TABLE. A	ALL UPD	ATES MUST BE MADE IN	THE ASSEMBLY.	-			, I.,						
		ITEMS 1-3 &	26 ARE F	IXED. IT	EM 1 IS A MANUAL BALLO	ons.							$\langle \rangle$	8 11 13 4 4 4		4
В	1 3 5.42 FT					$ \begin{array}{c} 20 & 6 \\ 1 & 1 \\ 1 & 2 \\ 3.67 & \text{FT} \end{array} $		$(1) \\ 1 \\ 1 \\ 4$		<u>(</u>)		В
A			DETAIL B CALE 0.4				DETAIL A SCALE 0.40		BLOCK HEATER KITS 350-500 MODELS 350-500 DEFER	- 8-10-10 NEW [A 12-1-10 (D-8 OTY COOL) B 3-31-11 (C-8 WAS) C 9-14-11 27443	NOTE: FOR PROPER N COMPOSITE DWGS, SEE PART NO. FO DRAWING [90056-3]) MI25A-08-80 OTY WAS 2 1 WAS 2; A-672-4 OTV WA ANT HOSE ROUTING UPDATED J A-672-20 WAS X-672-4; ID X-672-20 WAS X-672-4; ID X-222-11; X-206-9 WAS X-206 3] WAS GM51263 [92293-3]	R REVISION LEVEL . M6923-08-80 5 2; (C/D-1:2) 190686-31 -8) M125A-06-80 -2 [94353-31]	BY WHILES DIMENSES SPECIFIED U) DIVESSION ARE IN INLINE U) DIVESSION ARE IN INLINE X X X 0 1.0 X X 0 1.0 X X X 0 1.0 DJV APPROVALS DJV PARM DJV 8-10-11 COCCOS OWD 8.10-11 COCCOS OWD 8.10.11 COCCOS OWD 8.10.11 COCCO	AS KOHLER CO. PODER SYSTEMS, ROHLER THIS DROPERT AND MUST NOT CONNECTION WITH KOHLER DESIGN OR INVENTION AR TIME DWG, ASSY E D EXAL 0.14 [649 80.	METRIC PRO-E R. WI 53044 U.S.A. AND DETAIL IS KOHLER CO BE USED EXCEPT IN CO. WORK. ALL RIGHTS OF E RESERVED. BLOCK HEATER METTI of	D. F
L					7	^		φ	JOHN DEERE		2		JDZ 8-10-1	GM75		
		8	I		7	6	5		4	I	3	ļ	2			

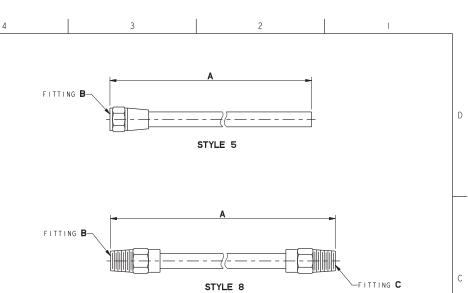
8	7	6	5	4	3	2	1
MATERI	AL TYPE SPECIFICATION						
TUBE: REINFORCEMENT: COVER: TEMP RANGE	[300° F] LUBE OIL LINES. HIGH TEMP, MEDIUM PRESSU TYPE AI, SAE JIOI9 AND S	TERS, ENGINE COOLANT LINES AND RE HOSE THAT MEETS OR EXCEEDS FI AC J1402 TABLE AI SPECIFICATION SISTANT SYNTHETIC RUBBER. SILE STEEL WIRE OVER ONE BRAID ' EXTILE BRAID IMPREGNATED WITH S TO +300° F]	MVSS 106-74, S	REINFORCEN CC TEMP. R/	UBE: SYNTHETIC RUBBER C MENT: HIGH STRENGTH SYNT VVER: OIL AND GASOLINE R MOISTURE AND HIGH NNGE: UP TO 125°C (257°F) 34 MPG TO 25°C (257°F)	EXCEED SAE J30R7 SPECIFICATI COMPOUND TO RESIST GASOLINE, HETIC TEXTILE. TESISTANT AND WITH STANDS EXP HEAT UP TO 125°C 1257°FJ JP TO & INCLUDING 3/8° ID HOS VER 3/8° HOSE IP TO & INCLUDING 3/8° ID HOS OVER 3/8 ID HOSE	OIL, DIESEL & OTHER FUELS. OSURE TO FUEL, VAPOR,
TUBE: REINFORCEMENT: COVER: TEMP. RANGE: WORK:	BUTANE-PROPANE APPLICATI MH5761 SYNTHETIC RUBBER TUBE STEEL WIRE BRAID SYNTHETIC RUBBER IMPREGN -40°C TO +150°C [-40°F 2.4 MPa [350 PS1] 12.0 MPa [1750 PS1]	ON ON LP GAS ENGINE. UL LISTING ATED TEXTILE BRAID TO +300° F]	MH6044 OR	REINFORCE TEMP. R MAX. OPERATING PRES BURST PRES	ENVIROMENTS, EXCE TUBE: TYPE A-NONCONDUCT MENT: ONE BRAID OF 300 ANGE: -54°C TO 204°C [-6 SURE: 5.5 MPa [800 PSI] SURE: 3.4 MPa [5000 PSI]]	FLUID AND GREASY
TUBE: REINFORCEMENT: COVER: TEMP. RANGE: WORK: BURST:	SYNTHETIC RUBBER SINGLE PARTIAL STEEL WIR SYNTHETIC RUBBER IMPREON -40°C TO +150°C [-40°F 1.7 MPa [250 PSI] 6.9 MPa [1000 PSI]	E BRAID ATED FABRIC COVER. TO +300° F]	S.	REINFORCE TEMP. R MAX. OPERATING PRES TYF REINFORCEM	JEÑT: BRAIDED, HIGH TEN VER: TYPE 2 (MODIFIED NGE: -20°C TO 100°C [-4 SURE: 3.45 MP⊲ [500 PS] E 8 PROPANE APPLICATI MUST MEET INDUSTR UBE: SYNTHETIC RUBBER	OIL AND HEAT RESISTANT ISILE STEEL WIRE NITRILE) 4°F TO 212°F1	/UL21
TUBE: REINFORCEMENT: COVER TEMP. RANGE: WORK BURST: TYPE 9 TUBE: REINFORCEMENT: COVER: TEMP. RANGE: WORK: BURST: TYPE 11 TUBE:	NEOPRENE SYNTHETIC RUBBE -40° C TO +135° C I-40° F 1.7 MPG [250 PSI] 0.084 MPG [250 PSI] 0.084 MPG [251 N HG] FUEL FEED APPLICATION MEE CHEMIVIC SYNTHETIC RUBBEF POLYESTER SPIRAL WITH NYI OIL AND HEAT RESISTANT SI THE REST OF THE FUEL LIN (-29 C TO 82 C) 200 PSI 400 PSI HOSE MUST MEET OR EXCEED SYNTHETIC RUBBER COMPOIN	WITH A HELICAL SPIRAL WIRE R TO +275° FJ ETING JI527 AND USCG TYPE AI-I5 CON BARRIER LEVE COVERING FITTINGS. NE IS NITRILE SYNTHETIC RUBBER O SAE IOORI7 SPECIFICATION. ND TO RESIST GASOLINE OLL DIES	SEL & OTHER FUELS.	REINFORCEM	E 10 HOSE MUST MEET OR UBE: SYNTHETIC RUBBER HIGH STRENGTH SYN VER: OIL AND GASOLINE MOISTURE AND HIGH NGE: UP TO 1257 C 1257F .34 MPa [50 PSI] URE: .24 MPa [25 PSI] URE: .24 MPa [25 PSI] URE: .24 MPa [25 PSI] URE: .24 MPa [175 PSI] URE: .26 MPa [-10 P: NOTES: DIMENSIONS IN [] FITTINGS: APPROPR PRESSURE. CONNECT APPEAR EXACTLY AS MATERIAL CERTIFIC/	UP TO & INCLUDING 3/8" ID HO: OVER 3/8" HOSE UP TO & INCLUDING 3/8" ID HO: OVER 3/8 ID HOSE SIJ WITHOUT COLLAPSE ARE ENGLISH EQUIVALENTS. IATE FOR APPLICATION, BURST F ION TYPE TO BE AS SPECIFIED.	OIL, DIESEL & OTHER FUELS. OSURE TO FUEL, VAPOR, SE AND SE & PRESSURE AND OPERATING FITTINGS MAY NOT
COVER: TEMP. RANGE:	MOISTURE -40°C TO 100°C [-40°F TO 21.0 MPa [3000 PS1] FOR	NT AND WITHSTANDS EXPOSURE TO F 212°F1 HOSE UP TO 31.5 [1.25]" ID HOSE ASSEMBLY O	UEL, VAPOR, VERALL LENGTH "A" TOLERANCE 1 1524.1-1905 [60.01-75] ±19.1 [.75] 5	IN REV [JA 5 JB 10 1905.2-UP [75.01-UP] UC 2-	NO CHANGE IN COLOF CONSIDER USING D-OOT ASSEMBLY OR PART MUST C DICATES PART NUMBERS AFF ATE ON COMPOSITE DWSJ. SEE PART NO.	R ARE ALLOWED WITHOUT PRIOR V FOR SPECIFICATION OF HOSE LINE. COMPLY WITH PEP-RML-001. FECTED BY LATEST DRAWING REVI FOR REVISION LEVEL BY MASS ON ANY AND ANY	SION SION METRIC PRO-E PORE SYSTERS, NOILER, WI SOOK U.S.A. PORES SYSTERS, NOILER, WI SOOK U.S.A. SOCIETIAN MUST NOILE CONSTRUCT AND MUST NOILE CONSTRUCT AND MUST NOILE CONSTRUCT AND MUST NOILE RESPECTANT Restruction of Design of Portal I and Portal I

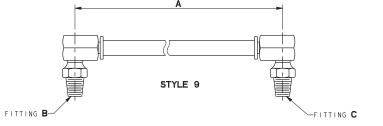
D

С

В

А

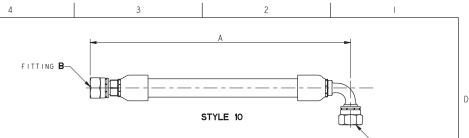

		8			7	6		5		↓	4	3	2	I	_
	PART NO	RE	v	Α	FITTING B	FITTING C	HOSE ID	STYLE	MATL TYPE						
	GM51589	EL		1270 [50.0]	[1/4-18] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	6.4 [.25]	1	5						
	ES-7 3	ER		1270 [50.0]	[I/4-I8] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	6.4 [.25]		6						
D	GM38483	ЕJ		1270 [50.0]	[1/4-18] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	1	5						D
	GM75369	FW		1524 [60.0]	[1/4] NPSM FEMALE SWIVEL-GLX	[1/4] NPSM FEMALE SWIVEL-GLX	6.4 [.25]	I	2						
	GM75758	FΡ		1650 [65.0]	[1/4-18] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	10.4 [.41]	I	6						
	GM38482	ЕJ		1650 [65.0]	[1/4-18] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	5						
					1	[5/8-18] THD									
	GM28340	EJ		584 [23.0]	[3/8-18] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	1	5						
	GM23505	EJ		1650 [65.0]	[3/8-18] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	5						
C	GM75759	FP		1956 [77.0]	[3/8-18] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	10.4 [.41]	I	6	FIT		ΑΑ			С
C	GM59340	ЕZ		1956 [77.0]	[3/8-18] NPT FEMALE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	5						
						57/10 001 TUD					-15				
	225204	EJ		432 [17.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	4.8 [. 9]	I	5		4	STYLE		FITTING C	
	2736 4	FW		737 [29.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	4.8 [. 9]	1	5			STILE	1		
	GM69928	FG		762 [30.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[3/4-16] THD FEMALE 45° FLARE SWIVEL	10.4 [.41]	1	7						
	344206	EJ		813 [32.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	1	3						
	273629	ЕJ		940 [37.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	4.8 [. 9]	1	I						
В	344205	EJ		940 [37.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	1	3						В
	GM22836	EJ		1016 [40.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	6.4 [.25]	1	5						
	324608	ЕJ		1092 [43.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	4.8 [. 9]	1	5						
	ES-71219	ET		1092 [43.0]	ETTIG-201 THD FEMALE 45° FLARE SWIVEL	ETTIG-20] THD FEMALE 45° FLARE SWIVEL	4.8 [.+9]		6						
	GM86395	в		1778 [70.0]	ETTIG-20] THD FEMALE JIC 45° FLARE SWIVEL	ETTIG-201 THD FEMALE JIC 45° FLARE SWIVEL	7.9 [.31]	1	3						
	<u> ES-70+0+</u>	ЕК		+874 [74.0]	E7/16-20] THD FEMALE 45° FLARE SWIVEL	E7/16-20] THD FEMALE 45° FLARE SWIVEL	7.9 [.3+]		3						
	<u> </u>	ЕМ		2192 [86.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	7.9 [.3+]		3				NOTE: DIMENSIONS IN [] AF		
А	GM93651	-		1270 [50.0]	EXTING [7/16-20] THD FEMALE 45° FLARE SWIVEL	[5/8-18] THD FEMALE 45° FLARE	9.5 [.38]	1	6		REV	NDICATES PART NUMBERS AFFECT DATE ON COMPOSITE DWGS, SEE PART NO. FOR RI I-15-16 SEE SHEET 5 OF 9 [CT165574]	VISION LEVEL BY UNLESS OTHERWISE SPECIFIED -		
	GM31751	EJ		2210 [87.0]	ENVEL [7/16-20] THD FEMALE JIC 37° FLARE SWIVEL	SWIVEL [7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	12.7 [.50]	1	5		HT I HW 2 HY 5	12-8-16 SEE SHEET I AND 5 OF 9 [CT167075] 2-20-17 SEE SHEET 6 [CT170738] 5-24-17 SEE SHEETS 5 AND 7 [CT171684]	BGW X, X ± 0.25 X, X ± 1.0 CEK X ± 1.5 SAM → X ± 1.5 SAM → X ± 1.5 N X ± 1.5 N X ± 1.5 N X X ± 1.5 N X X ± 1.5 N X X X ± 1.5 N X X X X X X X X X X X X X X X X X X X	POWER SYSTEMS, KOHLER, WI 53044 U.S.A. THIS DRAWING IN DESIGN AND DETAIL IS KOHLER (PROPERTY AND MUST NOT BE USED EXCEPT IN CONNECTION WITH KOHLER CO. WORK, ALL RIGHTS (DESIGN OR INVENTION ARE RESERVED.	0. JF
	ES-73270	FC		3810 [150.0]	[7/16-20] THD FEMALE JIC 37° FLARE SWIVEL	[7/8-141 THD	12.7 [.50]	1	5		JB I JC 2	5-8-18 SEE SHEET 1 AND 3 [CT186807] 0-29-18 SEE SHEET 1 CT189809] 2-25-19 SEE SHEET 3 & 8 [CT193537] 0-23-19 (C-8) REVISION FOR PART 273614	PAR APPROVALS DATE SUD DRAM JJC 2-5-97		:
		8			7	6		5		4	4	-23-19 (C-8) REVISION FOR PARI 273614 =FW" & SEE SHEET I & 5 [CT210] 3		^{™™} 273614-CMP E	
				1	I		I.			1		i I		İ.	


		8		7	6		5			4	3	2	
	PART NO	RE	V A	FITTING B	FITTING C	HOSE ID	STYLE	MATL TYPE	SERVICE ONLY				
	ES-71567	ΕT	4330 [170.5]	[7/16-20] THD FEMALE JIC 37° FLARE SWIVEL	SWIVEL	12.7 [.50]	I	5	-				
	ES-78818	-	4700 [185.0]	[7/16-20] THD FEMALE JIC 45° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	12.7 [.50]	I	5	-				
D	324512	EJ	432 [17.0]	[/2-20] THD FEMALE 45° FLARE SWIVEL	[I/2-20] THD FEMALE 45° FLARE SWIVEL	6.4 [.25]	I	I	-				D
	274733	EL	584 [23.0]	EI/2-20] THD FEMALE INVERTED FLARE	[/ 2 - 20] THD FEMALE 45° FLARE SWIVEL	6.4 [.25]	I	I	ХХ				
	324377	ЕJ	737 [29.0]	[1/2-20] THD FEMALE 45° FLARE SWIVEL	[1/2-20] THD FEMALE 45° FLARE SWIVEL	6.4 [.25]	I	I	-				
	GM16960	EJ	813 [32.0]	[1/2-20] THD FEMALE 45° FLARE SWIVEL	[I/2-20] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	I	3	-				
	GM10887	EJ	914 [36.0]	[I/2-I4] NPT FEMALE	[3/4-16] THD FEMALE JIC 37° FLARE SWIVEL	12.7 [.50]	I	5	-				
	273630	EJ	1219 [48.0]	[9/16-18] THD FEMALE 37° FLARE SWIVEL	[1/2-20] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	1	1	-		Α		
С	336863	EJ	1219 [48.0]	[9/16-18] THD FEMALE 37° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	5	-	FITTING B	-		с
	GM89284	-	450 [17.7]	[5/8-18] THD FEMALE 45° FLARE	[3/4-16] THD FEMALE 45° FLARE	7.9 [.31]	1	2	-				
	343603	EJ	508 [20.0]	SWIVEL [5/8-18] THD FEMALE 45° FLARE SWIVEL	SWIVEL [5/8-18] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	1	5	-		STYLE	1	FITTING C
	ES-71691	ΕV	508 [20.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	[5/8-18] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	I	6	-				4
	324481	EJ	1092 [43.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	[5/8-18] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	I	5	-				
	274738	CT	1600 [63.0]	[5/8-18] THD FEMALE INVERTED FLARE	[5/8-18] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	I	I	xx				
в	GM91721	A	1981 [78.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	[5/8-18] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	I	1	-				В
	354591	EJ	2159 [85.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	[5/8-18] THD FEMALE 45° FLARE SWIVEL	10.4 [.41]	I	I	-				
	GM105629	-	2050 [80.7]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	[/2-24] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	I	I	-				
	ES-79685	-	607 [24.0]	[II/16-16] UN-2B FEMALE PER SAE JI453, SWIVEL	[3/4-16] THD FEMALE 45° FLARE SWIVEL	9.5 [.38]	I	6	-				
	GM69927	FG	762 [30.0]	[II/I6-I6] UN-2B FEMALE PER SAE JI453, SWIVEL	[3/4-16] THD FEMALE 45° FLARE SWIVEL	10.4 [.41]	1	7	-				
	GM48025	EJ	8+3 [32.0]	[/ 6- 6] UN-2B FEMALE PER SAE J 453, SWIVEL	[/ 2 - 20] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]		3					
	ES-70103	EY	2281 [90.0]	[II/16-16] UN-2B FEMALE PER SAE JI453, SWIVEL	[1/2-20] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	-	3			NOUCATES DADT NUMBERS ASSESS	NOTE: DIMENSIONS IN [] AF	
A	ES-70102	ΕY	2355 [93.0]	[/ 6- 6] UN-2B FEMALE PER SAE J 453, SWIVEL	[1/2-20] THD FEMALE 45° FLARE SWIVEL	7.9 [.31]	I	3		REV	NDICATES PART NUMBERS AFFECT DATE ON COMPOSITE DWGS, SEE PART NO. FOR RI 12-8-16 SEE SHEET I AND 5 OF 9 ICTI67075:	VISION LEVEL BY UNLESS OTHERNISE SPECIFIED -	
	ES-73031	FA	762 [30.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	[3/4-16] THD FEMALE 45° FLARE SWIVEL	9.7 [.38]	I	5	-	2 YH AL	2-20-17 SEE SHEET 6 [CT170738] 5-24-17 SEE SHEETS 5 AND 7 [CT171684] 5-8-18 (B-8)GM105629 ADDED, GM91721 HOSE WAS 9.5 [.38], SEE SHEET 1 [CT180	CEK 2.3 7.6 SAM SAM	POMER SYSTEMS, KOHLER, WI 53044 U.S.A. THIS DRAWING IN DESIGN AND DETAIL IS KOHLER CO. PROPERTY AND WOST NOT BE USED EXCEPT IN CONNECTION WITH KOHLER CO. WORK, ALL RIGHTS OF DESIGN OR INVENTION ARE RESERVED.
	GM39501	EJ	1400 [55.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	[/ 6- 6] ORFS SAE J 453 (FEMALE)	9.5 [.38]	I	5	-	JC 2	0-29-18 SEE SHEET 1 [CT189809] 2-25-19 (B-8) 274738 REINSTATED; (D-8) 2: REINSTATED; SEE SHEET 8 [CT19353] 0-23-19 SEE SHEET 1,2 & 5 [CT210155]	4733 PAR APPROVALS DATE	Image Control Control <thcontrol< th=""> <thcontrol< th=""> <thcon< td=""></thcon<></thcontrol<></thcontrol<>
		8		7	6		5	1	Î	4	3	2	

1				7	6		5		4		3	2	I	
- -	PART NO	REV	A	FITTING B	FITTING C	HOSE ID	STYLE	MATL TYPE						
	GM78802	FU	1400 [55.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	[II/16-16] ORFS SAE JI453 (FEMALE)	9.5 [.38]	Ι	6						
	343604	EJ	1778 [70.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	[3/4-16] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	5						
D	ES-71690	FK	1778 [70.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	[3/4-16] THD FEMALE 45° FLARE SWIVEL	10.4 [.41]	I	6						D
	ES-72845	ΕY	3175 [125.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	[/ 6- 6] ORFS SAE J 453 (FEMALE)	9.5 [.38]	I	5						
	274503	EJ	432 [17.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	I						
_	GM38634	EJ	609 [24.0]	[7/8-14] THD FEMALE 37° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	15.8 [.62]	I	5						-
	GM67464	FE	760 [30.0]	[7/8-14] THD FEMALE JIC 45° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 45° FLARE SWIVEL	12.7 [.50]	I	7						
	ES-80186	-	813 [32.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	9.5 [.38]	I	5			А			
с	274502	EJ	889 [35.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	I	FITTING B -					С
	274632	EJ	1143 [45.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	Ι	I						
	36 547	EJ	1219 [48.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	15.8 [.62]	Ι	T					FITTING C	
	274633	EJ	1245 [49.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	I			STYLE	1		
	274634	EJ	1499 [59.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	I						-
	274228	EJ	1600 [63.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	5						
	ES-71689	FK	1600 [63.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	Ι	6						
в	354570	EJ	1600 [63.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	15.8 [.62]	Ι	I						В
	GM31750	EJ	1750 [68.9]	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	15.8 [.62]	I	5						
	GM20684	EJ	2 34 [84.0]	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	15.8 [.62]	I	5						
	274736	EJ	2159 [85.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]	I	I						F
_	ES-35703	ЕК	2337 [92.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]								
_	ES-35702	ЕК	2438 [96.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE 45° FLARE SWIVEL	12.7 [.50]								
	GM20683	EJ	2438 [96.0]	[7/8-14] THD FEMALE 37° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	15.8 [.62]	Ι	5		סאו ח	ICATES PART NUMBERS AFFEC	NOTE: DIMENSIONS IN [] A		
	347640	CG	711 [28.0]	[/ 6- 4] THD FEMALE 45°	[I I/I6-I4] THD	+9.0 [.75]		5		REV DA HP 9-29	TE ON COMPOSITE DWGS, SEE PART NO. FOR I I-16 SEE SHEETS 2, 3 AND 6 [CTI43502]			ж
	GM47365	EJ	1041 [41.0]	FLARE SWIVEL [/ 6- 2] THD FEMALE JIC 37° FLARE	FLARE SWIVEL [/ 6- 2] THD FEMALE JIC 37° FLARE	15.8 [.62]	I	I		HT 12-8	5-16 SEE SHEET 5 OF 9 [CT165574] -16 SEE SHEET 1 AND 5 OF 9 [CT167075 1-17 SEE SHEET 6 [CT170738] -17 SEE SHEETS 5 AND 7 [CT171684]	BGP 2: 1 2 1.5 51 BGW ANDLES ± 5 30 SWERACE FINISM CEK MARKES ± 5 30 MAX. CEK MARKES ± 6 30 MAX.	KONHLER CO. PORT SYSTEMS, KOHLER, WI S3044 U.S.A. THIS DRAWING IN DESIGN AND DETAILS NOHE DESIGN ON INVENTION ARE RESERVED. DESIGN OR INVENTION ARE RESERVED.	8 CO. S OF
	344358	CF	1245 [49.0]	SWIVEL [I I/I6-I4] THD FEMALE 45° FLARE SWIVEL	SWIVEL [I I/I6-I4] THD FEMALE 45° FLARE SWIVEL	19.0 [.75]	I	5		JA 5-8 JB 10-2 JC 2-25	-18 SEE SHEET I AND 3 [CT186807] 9-18 SEE SHEET I [CT189809] i-19 SEE SHEET 3 & 8 [CT193537]	RMJ APPROVALS DATE PAR PARM GFR 10 - 31 - 08 SUD CHECKED JMS 10 - 31 - 08	SCALE CAD NO. SHEET 4	9 10
F		8		7	6		5	<u> </u>	<u>↓</u> 4	JD 10-2	3-19 SEE SHEET 1,2 & 5 [CT210155] 3	PAS APPROVED WRD 10-31-08	273614-CMP	D

		8			7	6		5		4 3 2 1
	PART NO	RE	v	Α	FITTING B	FITTING C	HOSE ID	STYLE	MATL TYPE	
	347494	CF		1575 [62	2.0] [1/16-14] THD FEMALE 45° FLARE SWIVEL	[/ 6- 4] THD FEMALE 45° FLARE SWIVEL	19.0 [.75]	I	5	A
	347495	CF		1829 [72	[/ 6- 4] THD 2.0] FEMALE 45° FLARE SWIVEL	[/ 6- 4] THD FEMALE 45° FLARE SWIVEL	19.0 [.75]	I	5	
D	ES-70739	ЕМ		4826 [90	[/ 6- 2] THD 0.0] FEMALE J+C 37° FLARE- SWIVEL		15.8 [.62]			
	ES-7488 I	FM		4826 [90	[/ 6- 2] THD	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	19.0 [.75]	I	5	STYLE 1
	GM95059	-		2159 [85	[5/8-18] THD	[5/8-18] THD FEMALE 45° FLARE SWIVEL	9.5 [.38]	I	3	
	GM95060	-		2540 [00	[5/8-18] THD	[II/16-16] ORFS SAE JI453 (FEMALE)	9.5 [.38]	I	3	A
-	GM89918	A		1270 [50	[5/8-18] THD	[1/4-18] NPT MALE	9.5 [.38]	2	6	FITTING B
	GM89919			1270 [50	SWIVEL [5/8-18] THD	[9/16-18] THD FEMALE 37° FLARE		2	6	
	GM09919 GM116358	A		304.8 [12	SWIVEL (1/2-20) THD	SWIVEL (1/2-20) THD	9.5 [.38]	2	5	STYLE 2
С	UM110330			304.0 [12	SWIVEL	MALE 37 JIC	6.4 [.25]	2	5	
	273615	ΕJ		1092 [43	SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	4.8 [.19]	3	5	52.3 [2.06]
	GM37515	ЕJ		1600 [63	SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	4.8 [.19]	3	5	
₽	ES-71278	ΕS		1600 [63	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/16-20] THD FEMALE 45° FLARE SWIVEL	4.8 [.19]	3	6	
										REF 6.3 [.25]
в										$ = \frac{1}{REF}$
										STYLE 4
										\sim Fitting C Note: dimensions in [] are english equivalents.
A										□ INDICATES PART NUMBERS AFFECTED BY LATEST DRAWING REVISION A
										REV DATE OR COMPOSITE DNESS. SEE PART NO. FOR REVISION LEVEL BY Interspective prediction of the second seco
										REV DATE ON COMPOSITE DNGS. SEE PART NO. FOR REVISION LEVEL BY MALES OFFENELP FOLLOWING MALES OFFENELP FOLLOWING MALES OFFENELP FOLLOWING HW 2-20-11 SEE SHEET I 6 [C1170738] CEF X TOTAL SEE SHEET I AND 3 [CT186807] CEF X TOTAL SEE SHEET I AND 3 [CT186807] TOTAL SEE SHEET I AND 3 [CT186807] TOTAL SEE SHEET I AND 3 [CT186807] MALES OF A SEE SHEET I AND 3 [CT186807] MALES OF A SEE SHEET I AND 3 [CT186807] PAR JCI 2-20-19 SEE SHEET 1 A SEE SHEET 1 & 2 [CT193537] SUD PAR JD 10-23-19 [C-83] GMILES ADDED & SEE SHEET 1 & 2 [CT210155] PAS PAPROVALS DATE JD 10-23-19 [C-83] GMILES ADDED & SEE SHEET 1 & 2 [CT210155] PAS PAPROVALS DATE
										JD 10-23-19 (C-8) 64116338 ADDED & SEE SHEET IA 2 CCT210155 PAS APPROVALS Data Dime CFR Dime Dime CFR Dime Dim Dime Dime D
		8			7	6		5		

		8			7	6		5		Ļ	4		3
	PART NO	R	EV A		FITTING B	FITTING C	HOSE ID	STYLE	MATL TYPE				
	225676	EJ	635 [2	5.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	4.8 [.19]	5	I				
	ES-32511	ЕJ	813 [3	2.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	4.8 [.19]	5	I			FITTING B	
D	344210	EJ	940 [3	7.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	7.9 [.31]	5	3				1
	GM34010	ΕJ	1092 [4	3.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	9.5 [.38]	5	5				
	GM45890	ΕJ	1524 [6	0.01	[7/16-20] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	9.5 [.38]	5	5				
	225675	EJ	203 [8	01	[1/2-20] THD FEMALE 45° FLARE	NOT REQUIRED	7.9 [.31]	5					
					SWIVEL [1/2-20] THD FEMALE 45° FLARE								-
	ES-33534	EJ	381 []	5.01	SWIVEL	NOT REQUIRED	7.9 [.31]	5				FITTING \mathbf{B}	
	276283	EJ	737 [2	9.0]	[/2-20] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	7.9 [.31]	5	I				
С	GM34009	EJ	737 [2	9.01	[/ 2 - 20] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	9.5 [.38]	5	5				
	GM91237	A	275 []	0.81	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	7.9 [.31]	5	5				
	ES-32512	ЕJ	483 []	9.01	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	7.9 [.31]	5	I				
	GM102407	-	725 [23	8.51	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	7.9 [.31]	5	5				
	GM91238	в	991 [3	9.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	6.4 [.25]	5	5				
	GM94127	-	838 [3	3.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	6.4 [.25]	5	5				
	ES-71218	ЕТ	1092 [4	3.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	7.9 [.3+]	5	6				Ê
В	GM21201	EJ	1092 [4	3.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	7.9 [.31]	5	5			FITTING B	
	GM102408	-	1120 [4	4.1]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	6.4 [.25]	5	5				
	GM37610	ЕJ	1270 [5	0.01	E5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	9.5 [.38]	5	5				
	GM89283	-	1270 [5	60.0]	[5/8-18] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	9.5 [.38]	5	6				
	ES-81540	-	1270 [5	60.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	9.5 [.38]	5	5				
	GM29505	EJ	660 [2	6.0]	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	NOT REQUIRED	7.9 [.31]	5	5				
A	GM29559	ЕJ	813 [3]	2.0]	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	NOT REQUIRED	7.9 [.31]	5	5			REV DATE	ON COMPOSITE DWGS, SEE
	ES-80182	-	1270 [5	0.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	9.5 [.38]	5	5			HU 1-24-17 (A HV 1-30-17 (A HW 2-21-17 (B	-8) ADDED ES-83774 -8) ES-83774 LENGTH -8) GMI02407 & GMI0
	ES-83774	A	1118 [4	4.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	NOT REQUIRED	9.5 [.38]	5	5			JA 5-8-18 SE JB 10-29-18 SE JC 2-25-19 SE	E SHEETS 5 AND 7 [C E SHEET AND 3 [CT E SHEET [CT189809 E SHEET 3 & 8 [CT19
	<u> </u>	8			7	6		5		Å	4	JD 10-23-19 SE	<u>E SHEET 1,2 & 5 [CT</u>] 3


NOTE: DIMENSIONS IN [] ARE ENGLISH EQUIVALENTS.

В

□ INDICATES PART NUMBERS AFFECTED BY LATEST DRAWING REVISION

REV	DATE	ON COMPOSITE DWGS, SEE PART NO. FOR REVISION LEVEL	BY	UNLESS OTHERWISE	SPECIFIED -	KOHI	ER CO	METRI	C PRO-E
HT	12-8-16	SEE SHEET I AND 5 OF 9 [CTI67075]	BGW	1) DIMENSIONS ARE 2) TOLERANCES ARE	:	POWER SYS		LER. WI 53044	U.S.A.
ΗŲ	1-24-17	(A-8) ADDED ES-83774 [CT169865]		X.XX ± 0.25 X.X ± 1.0		THIS DRAW	NG IN DESI	GN AND DETAIL	IS KOHLER CO.
HV	-30- 7	(A-8) ES-83774 LENGTH WAS 1073 (CT170133]	1 MM	ANGLES ± 0° 30	SURFACE FINISH	PROPERTY A	ND MUST NO	ER CO, WORK,	PT IN
HW	2-21-17	(B-8) GMI02407 & GMI02408 ADDED [CTI70738]	CEK		✓ MAX.	DESIGN OR	INVENTION	ARE RESERVED.	CL RIGHTS OF
ΗY	5-24-17	SEE SHEETS 5 AND 7 [CT:7:684]	SAM	THIRD ANGLE		TITLE			
JA	5-8-18	SEE SHEET AND 3 [CT186807]	RMJ	APPROVALS	DATE	DWG,	FUEL	LINE, FL	EXIBLE
JB	10-29-18	SEE SHEET I [CT189809]	PAR	DRAME DRA	4-10-14	SCALE	CAD NO.		SHEET 6 of 9
JC	2-25-19	SEE SHEET 3 & 8 [CT193537]	SUD	CHECKED GFR	4-10-14	205 NO.			
JD	10-23-19	SEE SHEET 1,2 & 5 [CT210155]	PAS	APPROVED JJR	4-10-14		27361	4-CMP	D
		2		2					
		3		2				I.	
		•							

		8		7	6		5	
	PART NO	REV	A	FITTING B	FITTING C	HOSE ID	STYLE	MATL TYPE
	GM29506	ЕК	9+4 [36.0]	[7/16-20] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	+2.7 [.50]	10	5
D	GM78801	G A	1651 [65.0]	[I/2-I4] NPT FEMALE	[3/4-16] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	10.4 [.41]	10	6
U	GM10886	EJ	1651 [65.0]	[I/2-I4] NPT FEMALE	[3/4-16] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	12.7 [.50]	10	5
	ES-60215	EJ	1727 [68.0]	[9/16-18] THD FEMALE JIC 37° FLARE SWIVEL	[9/16-18] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	10.4 [.41]	10	I
	GM93426	A	1270 [50.0]	[5/8 -18] THD FEMALE 45° FLARE SWIVEL	[9/16-18] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	9.5 [.38]	10	6
	324967	EJ	1270 [50.0]	[3/4-16] THD FEMALE 45° FLARE SWIVEL	[3/4-16] THD FEMALE 45° SWIVEL 90° ELBOW	12.7 [.50]	10	5
	GM29558	EJ	965 [38.0]	[7/8-14] THD FEMALE 45° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	12.7 [.50]	10	5
С	GM29543	EJ	1143 [45.0]	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	[9/16-18] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	12.7 [.50]	10	5
	365236	EJ	1219 [48.0]	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	15.8 [.62]	10	5
	365282	ЕК	2+34 [84.0]	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	15.8 [.62]	10	
->	365232	FD	2438 [96.0]	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL	[7/8-14] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	15.8 [.62]	10	5
	GM69835	FF	432 [17.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	19.0 [.75]	10	5
	364027	EJ	625 [24.6]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	15.8 [.62]	10	I
В	GM69834	FF	711 [28.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	19.0 [.75]	10	5
	ES-71079	EN	1270 (50.0)	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	16.0 [.63]	10	6
	ES-70503	EH	1499 [59.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	15.8 [.62]	10	6
	GM69794	FT	1651 [65.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	19.0 [.75]	10	5
	ES-76590	GA	1651 [65.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	22.4 [.88]	10	6
	GM69795	FV	1880 [74.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	19.0 [.75]	10	5
		EJ	2286 [90.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	16.0 [.63]	10	
A	ES-66002	EJ	4572 [180.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL	[I I/I6-I2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	16.0 [.63]	10	I
	GM93584	-	1066.8 (42.0)	(II/I6-I6 UN-2B) THD FEMALE, ORFS, SWIVEL	(11/16-16 UN-2B) THD FEMALE, ORFS, SWIVEL 90° ELBOW	9.5 (.375)	10	9
		8		7	6		5	

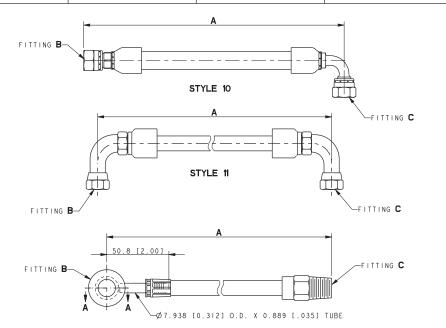
FITTING C

С

В

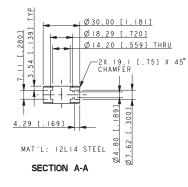
Δ

* ES-76590 FITTING ${f C}$: USE OF REDUCING ADAPTERS ACCEPTABLE.


NOTE: DIMENSIONS IN [] ARE ENGLISH EQUIVALENTS.

□ INDICATES PART NUMBERS AFFECTED BY LATEST DRAWING REVISION

	REV	DATE	ON COMPOSITE DWGS, SEE PART NO. FOR RE	EVISION LEVEL BY	C la	INLESS OTHERWISE SP	ECIFIED -	KOHI	ER CO	ME	TRIC	PRO-E
	ΗP	9-29-16	SEE SHEETS 2, 3 AND 6 [CT143502]	SAM	мż	DIMENSIONS ARE I		POWER SYS			3044 U.	s 4
	HR	11-15-16	SEE SHEET 5 OF 9 [CT165574]	BGP	PI>	(.XX ± 0.25 (.X ± 1.0			ING IN DESI			
	ΗT	12-8-16	SEE SHEET I AND 5 OF 9 [CT167075]] BGW	w 2	MGLES ± 0° 30	SURFACE FINISH	PROPERTY #	AND MUST NO	T BE USED	EXCEPT 1	N
	HW	2-20-17	SEE SHEET 6 [CTI70738]	CEK	κ		\forall	DESIGN OR	INVENTION	ARE RESERV	ED.	IGHTS OF
	ΗY	5-24-17	(A-8) ES-66538 VOIDED, SEE SHEET	5 [CT171684] SAM	М	PROJECTION	⊖ I	11116				
	JA	5-8-18	SEE SHEET I AND 3 [CT186807]	RMJ	1	APPROVALS	DATE	DWG,	FUEL	LINE,	FLEX	IBLE
	JB	10-29-18	SEE SHEET I [CT189809]	PAR	R	DRAME DRA	4-10-14	SCALE	CAD NO.		5	EET7 of 9
	JC	2-25-19	SEE SHEET 3 & 8 [CT:93537]	SUD	D	CHECKED GFR	4 10 14	205 NO.				
	JD	10-23-19	SEE SHEET 1,2 & 5 [CT210155]	PAS	s ′	APPROVED JJR	4-10-14		27361	4-CMP		D
			2			2						
4			3			2				1		


		8		7	6		5	
	PART NO	REV	A	FITTING B	FITTING C	HOSE ID	STYLE	MATL
	361283	EJ	559 [22.0]	[I 5/I6-I2] THD FEMALE JIC 37° FLARE SWIVEL	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	22.4 [.88]	10	I
	361468	EJ	991 [39.0]	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	22.4 [.88]	10	I
,	361098	EJ	1270 [50.0]	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	22.4 [.88]	10	I
	ES-76589	FX	1270 [50.0]	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	22.4 [.88]	10	6
	GM10689	EJ	1651 [65.0]	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL	[I 5/I6-I2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	22.4 [.88]	10	I
	ES-66802	EJ	3302 [130.0]	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	22.4 [.88]	10	I
-	GM95672	-	584 [23.0]	(II/16-16 UN-2B) THD FEMALE, ORFS, SWIVEL	(11/16-16 UN-2B) THD FEMALE, ORFS, SWIVEL 90° ELBOW	9.5 (.375)	10	9
	GM107378	-	1270 [50.0]	[I/I6-I2] THD FEMALE JIC 37° FLARE SWIVEL	[I I/16-12] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	19.0 [.75]	10	5
	364514	EJ	700 [27.6]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	15.8 [.62]		5
	364028	EJ	1067 [42.0]	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	[/ 6- 2] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	15.8 [.62]	11	5
	ES-66539	EJ	2667 [105.0]	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	[5/16-12] THD FEMALE JIC 37° FLARE SWIVEL 90° ELBOW	22.4 [.88]	11	I
	GM93585	A	1778 [70.0]	(11/16-16 UN-2B) THD FEMALE, ORFS, SWIVEL 90° ELBOW	(11/16-16 UN-2B) THD FEMALE, ORFS, SWIVEL 90° ELBOW	9.5 (.375)	Ш	9
Þ	GM93885	-	1016 [40.0]	(11/16-16 UN-2B) THD FEMALE, ORFS, SWIVEL 90° ELBOW	(11/16-16 UN-2B) THD FEMALE, ORFS, SWIVEL 90° ELBOW	9.5 (.375)	11	9

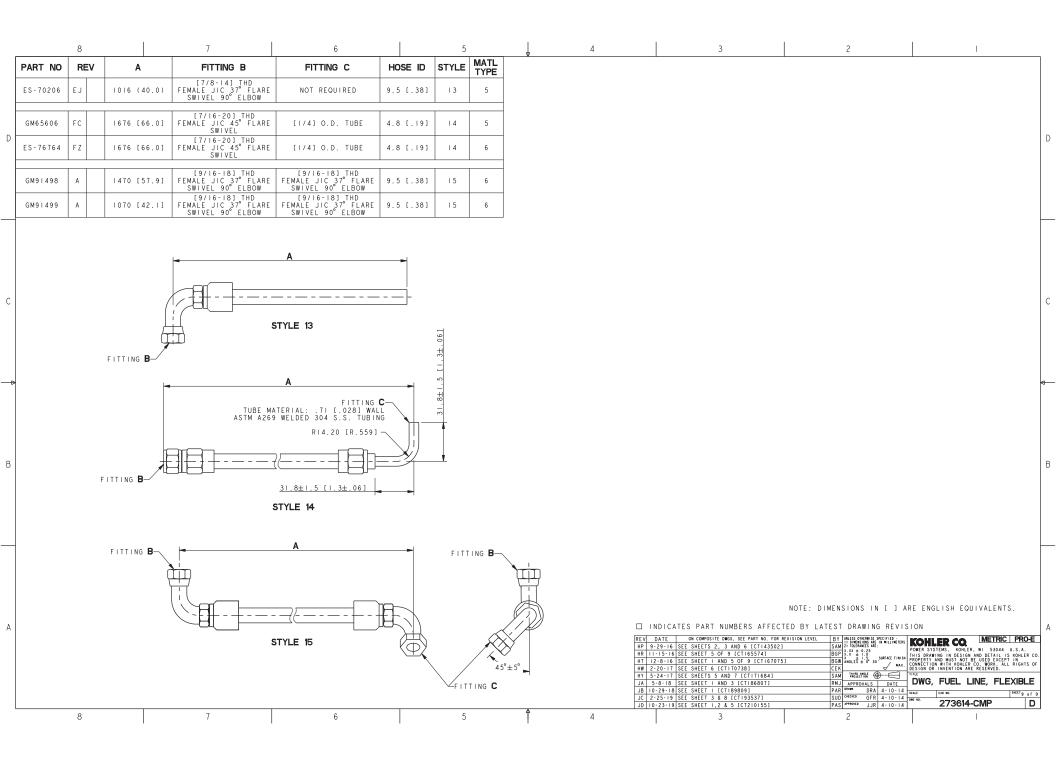
В

ર

STYLE 12

NOTE: DIMENSIONS IN [] ARE ENGLISH EQUIVALENTS.

D


С

В

INDICATES	PART	NUMBERS	AFFECTED	ΒY	LATEST	DRAWING	REVISION

A					C	□ INDICATES PART NUMBERS AFFECTED BY LA	TEST DRAWING REVISION A
					וא א א א	EV DATE ON COMPOSITE DNGS, SEE PART NO. FOR REVISION LEVEL MP 9-29-16 SEE SHEETS 2, 3 AND 6 [CT143502] HR 1:-15-16 SEE SHEET 5 OF 9 [CT165574] HT 12-8-16 SEE SHEET 1 AND 5 OF 9 [CT167075] HT 82-8-16 SEE SHEET 1 CT1170738]	BY THEIS DIRENTING DECISION THE DECISION OF TH
					H J J J	NT 5-24-17 SEE SHEETS 5 AND 7 [CT171684] JA 5-8-18 SEE SHEET 1 AND 3 [CT186807] JB [0-29-18] SEE SHEET 1 [CT189809] JC [2-25-19] [C-81 (GMI07378 ADDED; SEE SHEET 3 [CT193537] JD [0-23-19] SEE SHEET 1 2 & 5 [CT21055]	SAM Weith (Miss) That RM
	8	7	6	5	4	3	2 I

Λ

Warranty

Stationary Standby and Prime Power Industrial Generator Set One-Year or Two Thousand (2000)-Hour Limited Warranty

Your Kohler product has been manufactured and inspected with care by experienced craftsmen. If you are the original end user, Kohler Co. warrants, for the period indicated below, each product to be free from defects in materials and workmanship. In the event of a defect in materials or workmanship, Kohler Co. will repair, replace, or make appropriate adjustment at Kohler Co.'s option if the product, upon Kohler Co.'s inspection, is found to be properly installed, maintained, and operated in accordance with Kohler Co.'s instruction manuals. A Kohler distributor, dealer, or authorized service representative must perform startup.

Kohler Product

Warranty Coverage

Stationary Standby Generator Set & Accessories	One (1) year from registered startup or two thousand (2000) hours (whichever occurs first). In any event, the warranty period will expire not later than thirty (30) months from the date of shipment from Kohler Co.'s factory.
Stationary Prime Power Generator Set & Accessories	One (1) year from registered startup or two thousand (2000) hours (whichever occurs first). In any event, the warranty period will expire not later than thirty (30) months from the date of shipment from Kohler Co.'s factory.

The following will not be covered by the warranty:

- 1. Normal wear, routine tuneups, tuneup parts, adjustments, and periodic service.
- 2. Damage, including but not limited to damage caused by accidents, improper installation or handling, faulty repairs not performed by an authorized Kohler service representative, improper storage, or acts of God.
- 3. Damage caused by operation at speeds, or with fuel, loads, conditions, modifications or installation contrary to published specifications.
- 4. Damage caused by negligent maintenance such as:
 - a. Failure to provide the specified type and sufficient quantity of lubricating oil.
 - b. Failure to keep the air intake and cooling fin areas clean.
 - c. Failure to service the air cleaner.
 - d. Failure to provide sufficient coolant and/or cooling air.
 - e. Failure to perform scheduled maintenance as prescribed in supplied manuals.
 - f. Failure to regularly exercise the generator set under load (stationary applications only).
- 5. Original installation charges and startup costs.
- 6. Starting batteries and the following related expenses:
 - a. Labor charges related to battery service.
 - b. Travel expenses related to battery service.
- 7. Additional expenses for repairs performed after normal business hours, i.e. overtime or holiday labor rates.

- 8. Rental of equipment during the performance of warranty repairs.
- 9. Removal and replacement of non-Kohler-supplied options and equipment.
- Non-Kohler replacement parts. Replacement of a failed Kohler part with a non-Kohler part voids the warranty on that part.
- 11. Radiators replaced rather than repaired.
- 12. Fuel injection pumps not repaired by an authorized Kohler service representative.
- 13. Non-Kohler-authorized repair shop labor without prior approval from Kohler Co. Warranty Department.
- 14. Engine fluids such as fuel, oil, or coolant/antifreeze.
- 15. Shop supplies such as adhesives, cleaning solvents, and rags.
- 16. Expenses incurred investigating performance complaints unless the problem is caused by defective Kohler materials or workmanship.
- 17. Maintenance items such as fuses, lamps, filters, spark plugs, loose or leaking clamps, and adjustments.
- 18. Travel time and mileage exceeding 300 miles round trip.

To obtain warranty service, call 1-800-544-2444 for your nearest authorized Kohler service representative or write Kohler Co., Service Department, MS072, Kohler, WI 53044 USA.

KOHLER CO. SHALL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, AND/OR CONSEQUENTIAL DAMAGES OF ANY KIND including, but not limited to, incidental and/or consequential labor costs, installation charges, telephone charges, or transportation charges in connection with the replacement or repair of defective parts.

This is our exclusive written warranty. We make no other express warranty nor is anyone authorized to make any on our behalf.

ANY IMPLIED OR STATUTORY WARRANTY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS EXPRESSLY LIMITED TO THE DURATION OF THIS WARRANTY. Some states do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of incidental and/or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

KOHLER CO., Kohler, Wisconsin 53044 Phone 920-457-4441, Fax 920-459-1646 For the nearest sales/service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

TP-5374 12/15f

Stationary Standby Industrial Generator Set Extended Five-Year or Three Thousand (3000)-Hour Comprehensive Limited Warranty

Your Kohler product has been manufactured and inspected with care by experienced craftsmen. If you are the original end user, Kohler Co. warrants, for the period indicated below, each product to be free from defects in materials and workmanship. In the event of a defect in materials or workmanship, Kohler Co. will repair, replace, or make appropriate adjustment at Kohler Co.'s option if the product, upon Kohler Co.'s inspection, is found to be properly installed, maintained, and operated in accordance with Kohler Co.'s instruction manuals. A Kohler distributor, dealer, or authorized service representative must perform startup.

Kohler Product

Stationary Standby Generator Set & Accessories

Warranty Coverage

Five (5) years from registered startup or three thousand (3000) hours (whichever occurs first).

This warranty is effective only upon Kohler Co.'s receipt of an extended warranty registration form and warranty fee within one year of registered startup. The comprehensive limited warranty start date is determined by the standard limited warranty requirements and runs concurrent with the standard limited warranty during the first year. To receive extended comprehensive limited warranty coverage, the provisions of the standard limited warranty registration must be met.

The following will not be covered by the warranty:

- 1. Normal wear, routine tuneups, tuneup parts, adjustments, and periodic service.
- 2. Damage, including but not limited to damage caused by accidents, improper installation or handling, faulty repairs not performed by an authorized Kohler service representative, improper storage, or acts of God.
- Damage caused by operation at speeds, or with fuel, loads, conditions, modifications or installation contrary to published specifications.
- 4. Damage caused by negligent maintenance such as:
 - a. Failure to provide the specified type and sufficient quantity of lubricating oil.
 - b. Failure to keep the air intake and cooling fin areas clean.
 - c. Failure to service the air cleaner.
 - d. Failure to provide sufficient coolant and/or cooling air.
 - e. Failure to perform scheduled maintenance as prescribed in supplied manuals.
 - f. Failure to regularly exercise the generator set under load (stationary applications only).
- 5. Original installation charges and startup costs.
- 6. Starting batteries and the following related expenses:
 - a. Labor charges related to battery service.
 - b. Travel expenses related to battery service.
- Engine coolant heaters, heater controls, and circulating pumps after the first year of the warranty period.

- 8. Additional expenses for repairs performed after normal business hours, i.e. overtime or holiday labor rates.
- 9. Rental of equipment during the performance of warranty repairs.
- 10. Removal and replacement of non-Kohler-supplied options and equipment.
- 11. Non-Kohler replacement parts. Replacement of a failed Kohler part with a non-Kohler part voids the warranty on that part.
- 12. Radiators replaced rather than repaired.
- 13. Fuel injection pumps not repaired by an authorized Kohler service representative.
- 14. Non-Kohler-authorized repair shop labor without prior approval from Kohler Co. Warranty Department.
- 15. Engine fluids such as fuel, oil, or coolant/antifreeze.
- Shop supplies such as adhesives, cleaning solvents, and rags.
- 17. Expenses incurred investigating performance complaints unless the problem is caused by defective Kohler materials or workmanship.
- 18. Maintenance items such as fuses, lamps, filters, spark plugs, loose or leaking clamps, and adjustments.
- 19. Travel time and mileage exceeding 300 miles round trip.

To obtain warranty service, call 1-800-544-2444 for your nearest authorized Kohler service representative or write Kohler Co., Service Department, MS072, Kohler, WI 53044 USA.

KOHLER CO. SHALL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, AND/OR CONSEQUENTIAL DAMAGES OF ANY KIND including, but not limited to, incidental and/or consequential labor costs, installation charges, telephone charges, or transportation charges in connection with the replacement or repair of defective parts.

This is our exclusive written warranty. We make no other express warranty nor is anyone authorized to make any on our behalf.

ANY IMPLIED OR STATUTORY WARRANTY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS EXPRESSLY LIMITED TO THE DURATION OF THIS WARRANTY. Some states do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of incidental and/or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

KOHLER CO., Kohler, Wisconsin 53044 Phone 920-457-4441, Fax 920-459-1646 For the nearest sales/service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

TP-5561 8/16f

Certification

By Royal Charter

Certificate of Registration

QUALITY MANAGEMENT SYSTEM - ISO 9001:2015

This is to certify that:

Kohler Power Systems N7650 Lakeshore Road Sheboygan Wisconsin 53083 USA

Holds Certificate No:

FM 727336

and operates a Quality Management System which complies with the requirements of ISO 9001:2015 for the following scope:

Design, manufacture, and distributor support for electrical generators, alternators, fuel tanks, automatic transfer switches and switchgear.

For and on behalf of BSI:

Original Registration Date: 1995-02-28 Latest Revision Date: 2021-10-29

tomas Carlos Pitanoa, Chief Assurance – Americas

Effective Date: 2021-11-07 Expiry Date: 2024-11-06

Page: 1 of 2

...making excellence a habit."

This certificate remains the property of BSI and shall be returned immediately upon request. An electronic certificate can be authenticated <u>online</u>. Printed copies can be validated at www.bsigroup.com/ClientDirectory

To be read in conjunction with the scope above or the attached appendix. Information and Contact: BSI, Kitemark Court, Davy Avenue, Knowlhill, Milton Keynes MK5 8PP. Tel: + 44 345 080 9000 BSI Assurance UK Limited, registered in England under number 7805321 at 389 Chiswick High Road, London W4 4AL, UK. A Member of the BSI Group of Companies.

Certificate No: FM 727336

Location	Registered Activities
Kohler Power Systems - GK 900 Highland Drive Bldg 604 Kohler Wisconsin 53004 USA	Manufacture of leads and harness, automatic transfer switches and switchgear. Distribution of generator sets.
Kohler Power Systems N7650 Lakeshore Road Sheboygan Wisconsin 53083 USA	Design, manufacture, and distributor support for electrical generators, automatic transfer switches and switchgear.
Kohler Power Systems 300 N Dekora Woods Blvd Saukville Wisconsin 53080 USA	Manufacture of fuel tanks, skids, fabricated components and generators.
Kohler Power Systems Muth Warehouse 2821 Muth Court Sheboygan Wisconsin 53083 USA	The distribution of generator sets.
Kohler Power Systems KWIP Warehouse 4327 County EE Sheboygan Wisconsin 53081 USA	Receiving, sequencing and warehousing of generator components.

Original Registration Date: 1995-02-28 Latest Revision Date: 2021-10-29 Effective Date: 2021-11-07 Expiry Date: 2024-11-06

Page: 2 of 2

This certificate remains the property of BSI and shall be returned immediately upon request. An electronic certificate can be authenticated <u>online</u>. Printed copies can be validated at www.bsigroup.com/ClientDirectory To be read in conjunction with the scope above or the attached appendix. Information and Contact: BSI, Kitemark Court, Davy Avenue, Knowlhill, Milton Keynes MK5 8PP. Tel: + 44 345 080 9000 BSI Assurance UK Limited, registered in England under number 7805321 at 389 Chiswick High Road, London W4 4AL, UK. A Member of the BSI Group of Companies.

160 SW 12TH AVE SUITE 106, DEERFIELD BEACH, FL 33442

Technical Evaluation Report

DIVISION: 48 10 00-ELECTRICAL POWER GENERATION EQUIPMENT

THIS DOCUMENT CONTAINS (7) PAGES. THE FIRST PAGE MUST BEAR AN ORIGINAL SIGNATURE & SEAL OF THE CERTIFYING PE TO BE VALID FOR USE. COPIES NOT VALID FOR PERMIT.

(Subject to Renew March 1, 2022 or next code cycle)

EVALUATION SUBJECT: 350-500REOZJC/D Sound Level 2 Aluminum Enclosure

TER-20-25965.1

REPORT HOLDER: KOHLER POWER SYSTEMS 7650 LAKESHORE ROAD SHEBOYGAN, WI 53083 USA (920) 457-4441 | KOHLERPOWER.COM

(954) 354-0660 | ENGINEERINGEXPRESS.COM

SCOPE OF EVALUATION (compliance with the following codes):

THIS IS A STRUCTURAL (WIND) PERFORMANCE EVALUATION ONLY. NO ELECTRICAL OR TEMPERATURE PERFORMANCE RATINGS OR CERTIFICATIONS ARE OFFERED OR IMPLIED HEREIN.

This Product Evaluation Report is being issued in accordance with the requirements of the **International Building Code (2012, 2015, & 2018)** and the **Florida Building Code Sixth & Seventh Editions (2017& 2020)** per ASCE 7, FBC Building Ch. 16, FBC Building Sections 104.11 and 453.25.5, FBC Existing Building Sections 707.1 and 707.2, FBC Residential M1202.1 and M1301.1, FMC 301.15, and FS 471.025. The product noted on this report has been tested and/or evaluated as summarized herein.

IN ACCORDANCE WITH THESE CODES EACH OF THESE REPORTS MUST BEAR THE ORIGINAL SIGNATURE & RAISED SEAL OF THE EVALUATING ENGINEER.

SUBSTANTIATING DATA:

Product Evaluation Documents

Substantiating documentation has been submitted to provide this TER and is summarized in the sections below.

Structural Engineering Calculations

Structural engineering calculations have been prepared which evaluate the product based on rational analysis to qualify the following design criteria:

- Maximum rated wind pressures via Components & Cladding methodology.
- Structural component connection integrity, verified by a unity check between tension and shear.
- Anchorage integrity for unit and tank mounts.

Calculation summary is included in this TER and appears below. NOTE: No 33% increase in allowable stress has been used in the design of this product.

INSTALLATION:

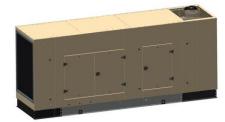
The product(s) listed above shall be installed in strict compliance with this TER & manufacturer-provided enclosure model specifications.

The product components shall be of the material specified in the manufacturerprovided product specifications. All screws, bolts and rivet must be installed in accordance with the applicable provisions & anchor manufacturer's published installation instructions.

LIMITATIONS & CONDITIONS OF USE:

Use of this product shall be in strict accordance with this TER as noted herein. Adjustment factors noted herein and the applicable codes must be considered, where applicable. Installation shall conform to the minimum standards stated in the referenced building code(s) in addition to tie-down details and limitations stated herein.

See final page for complete limitations & conditions of use.


UNIT CASING MATERIAL:

1/8" Al 5052-H32 top and side panels and 1/4" steel ASTM A36 for bottom skids, secured with 3/16" Ø SS GR. 50, M6 low carbon steel drill screws, M6 class 4.8 machine screws, 5/16" A2-70 SS bolts and M12 bolts class 8.8. (see enclosure, component drawings per manufacturer for specific locations).

TERMINOLOGY:

See list of abbreviations on the final page of this report.

Florida Building Code Sixth & Seventh Editions (2017 & 2020) International Building Code (2012, 2015 & 2018)

NOTE: THE GRAPHICAL DEPICTIONS IN THIS REPORT ARE FOR ILLUSTRATIVE PURPOSES ONLY AND MAY DIFFER IN APPEARANCE.

OPTIONS:

This evaluation is valid for KOHLER 350-500REOZJC/D Sound Level 2 Aluminum Enclosures described herein.

This evaluation includes standard product only. Contact the manufacturer for Engineering Special (ES) orders. Any structural changes outside of the design as described herein would void this certification.

STRUCTURAL PERFORMANCE:

Models referenced herein are subject to the following design limitations:

Maximum Rated Wind Pressure*:

- Required design pressures shall be determined on a site-specific basis in accordance with ASCE 7 and applicable sections of the building code(s) being referenced in accordance with ASD methodology.

- Required design pressures shall be less than or equal to the maximum pressures listed herein.

- *Maximum Rated Wind Pressures indicate the maximum pressures that all units listed herein are approved for. Valid for at-grade applications only. See limitations herein.

- Site-specific wind analysis may produce alternate limitations provided maximum rated wind pressures stated herein are not exceeded.

VISIT ECALC.IO/259651

FOR ENGINEER CERTIFIED ORIGINALS & MORE INFORMATION ABOUT THIS DOCUMENT OR SCAN THE QR CODE TO THE RIGHT >

VISIT ENGINEERINGEXPRESS.COM/STORE FOR ADDITIONAL PLANS, REPORTS & RESOURCES

ORIGINAL SIGNATURE AND RAISED SEAL OR DIGITAL SEAL REQUIRED TO BE VALID PER CODE:

PE SEAL REQUIRED

August 21, 2020

 Frank Bennardo, P.E., SECB
 If Checked, Certifying

 ENGINEERING EXPRESS®
 Engineer and PE #

 FL PE #0046549
 FLCA #9885
 Appear Above

 DIGITAL SEAL NOTICE:
 IF THIS DOCUMENT IS DIGITALLY SIGNED, THIS SHEET IS PART OF A

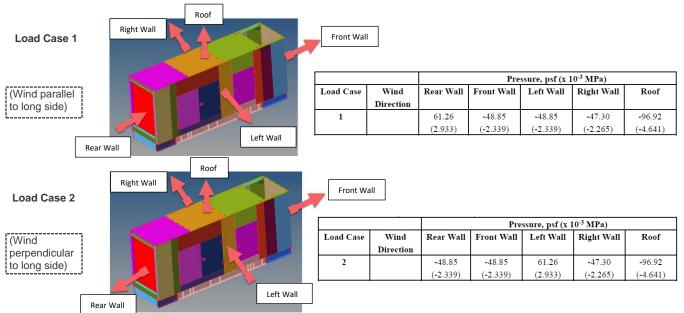
 DIGITALLY SIGNED FILE. IT SHALL REMAIN IN DIGITAL FORMAT, SHALL BE VERIFIED BY
 ELECTRONIC MEANS, & PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED

 SIGNED AND SEALED. VISIT ECALC.IO/DS FOR MORE INFORMATION.
 ENFORMATION.

PRINTED DOCUMENT NOTICE: IF THIS DOCUMENT IS PRINTED & DOES NOT CONTAIN AN ENGINEER'S ORIGINAL SIGNATURE & SEAL, THIS DOCUMENT IS VOID & NOT VALID FOR USE. PHOTOCOPIES ARE NOT PERMITTED FOR USE.

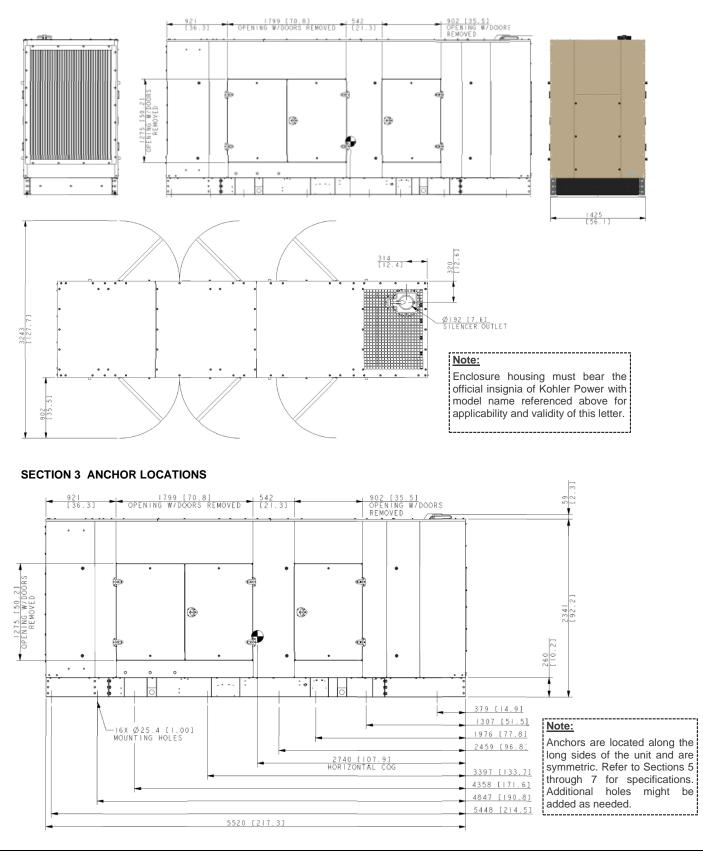
The FBC 6th & 7th Editions (2017 & 2020) define APPROVED SOURCE (Section 202) as: "An independent person, firm or corporation, approved by the building official, who is competent and experienced in the application of engineering principles to materials, methods or systems analyses." Engineering Express® professionals meet the competency requirements as defined in the FBC and can seal their work. Engineering Express® is regularly engaged in conducting and providing engineering evaluations of single-element and full-scale building systems tests. G18-529 7/20

SECTION 1 SUMMARY


Engineering Express has reviewed the design requirements per the Florida Building Code Sixth & Seventh Editions (2017 & 2020) and ASCE 7 for the structural integrity of the Kohler aluminum housing units with steel skid to withstand the maximum rated wind pressures stated herein. This TER certifies the enclosures listed herein for maximum uniform static wind loading pressures stated herein and anchorage integrity only. Our analysis includes the unit framing and housing only and requires a permanent near-grade (non-rooftop) attachment to a concrete, metal, or wood host structure as certified/verified by others. Steel skid tie-down anchor locations shall conform to Section 3 of this TER. Additionally, the unit shall not be installed in a location susceptible to channeling effects from upwind obstacles. It shall be the installer's responsibility to ensure that the criteria for the unit housing integrity, as listed above, is applicable for use at the location of installation and the mounting method meets or exceeds the requirements of the local code and it is approved by the appropriate local authority before installation.

This certification is intended to certify the structural capacity and integrity of the structural framing members, wall and roof sheet metal skins, generator skid and internal structural connections only for the sound aluminum enclosures listed herein to resist the stated maximum rated uniform wind pressures. Design of the generator itself, mechanical designs, energy/electrical criteria, generator slab support, anchorage and tie-down method accompanying components and all non-structural items shall be verified by others and outside the scope of this certification. Upon analysis of the aluminum housing unit vs. the critical ultimate design loads illustrated below, this engineer has concluded that the aluminum housing enclosure provides adequate resistance to the specified ultimate design loads.

Structural Engineering Calculations


Structural engineering calculations have been prepared which evaluate the aluminum unit housing based on rational analysis using Finite Element Analysis to qualify the following design criteria:

1. Maximum ultimate design pressures as evaluated below:

- 2. Supplemental FEA has been performed to evaluate the front and left walls of the enclosure to +/- 65 psf. Upon thorough review of the results, it is the opinion of this engineer that the results, coupled with the FEA above, satisfactorily indicate the enclosure and skid stresses remain below ultimate tensile stress and thus, provide adequate resistance to the maximum wind pressures stated herein.
- 3. Maximum housing unit dimensions: 218" L x 57" W x 93" H. For exact enclosure dimensions, see ADV-9189. Enclosure weight shall be between 1000 lb and 2000 lb. Weights outside of this range shall be approved by this office.
- 4. Enclosure materials have been analyzed for yield and ultimate tensile stresses using Von Mises stress criteria in accordance with the 2015 Aluminum Design Manual & AISC Steel Construction Manual 14th Edition. For both load cases, Von Mises stresses were below the ultimate tensile stresses of the respective materials; therefore, the sound aluminum enclosure will provide enough structural capacity to resist wind pressures shown.
- 5. All internal connection capacities, including bolted and welded components, have been checked for applicable tension and shear by applying a unity interaction equation where applicable and have been approved by this office.

SECTION 2 DIMENSIONS & ELEVATIONS

IN ALL CONDITIONS IT IS THE RESPONSIBILITY OF THE PERMIT HOLDER TO ENSURE THE HOST STRUCTURE IS CAPABLE OF WITHSTANDING THE RATED GRAVITY, LATERAL, AND UPLIFT FORCES BY SITE-SPECIFIC DESIGN. NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, IS OFFERED BY ENGINEERING EXPRESS AS TO THE INTEGRITY OF THE HOST STRUCTURE TO CARRY DESIGN FORCE LOADS INCURRED BY THIS UNIT.

CORP. OFC: 160 SW 12TH AVENUE SUITE 106, DEERFIELD BEACH, FLORIDA 33442 Page 3 of 7 (954) 354-0660 | (866) 396-9999 | TEAM@ENGINEERINGEXPRESS.COM | ENGINEERINGEXPRESS.COM | ENGINEERINGEXPRESS.COM

Copyright © Engineering Express® All Rights Reserved

SECTION 4 ENCLOSURE MODELS INCLUDED

GENERATOR	ENCLOSURE TYPE	ENCLOSURE DRAWING NUMBER	REVISION & DATE	RETROFIT DRAWING NUMBER	REVISION & DATE
350-500REOZJC 350-400REOZJD	350-500REOZJC/D Sound Level 2 Aluminum Enclosure	GM110077	Rev A - 1/17/20	GM109392	Rev – 2/4/20

SECTION 5 ANCHOR DIRECTIVE

	FUEL TANK		A - ANCHOR		_	C - MIN.	D - MIN.	# OF	# OF	
GENSET MODELS	LITERS	GAL	ANCHOR BRAND	MODEL	DIAMETER (IN.)	B - EMBEDMENT (in.)	EDGE DISTANCE (in.)	CONCRETE THICKNESS (in.)	ANCHORS FOR TANK TO CONCRETE*	THRU- BOLTS FOR SKID TO TANK
	NO T	NO TANK						16**	-	
350REOZJC/D	1529- 5047	404- 1333		KWIK BOLT 3 (CARBON STEEL)	3 DN 0.75)	4.75	6	8	18	16***
400REOZJC/D 500REOZJC	5042- 9993	1332- 2640	HILTI						18	12****
	11602- 13325	3065- 3520		ESR-2302					24	12****

ANCHOR DIRECTIVE NOTES

- Refer to ADV-9189 and Section 7 for additional specifications. NOTE: Only anchorage integrity is being certified for I-beams and tanks.

*For tank anchorage to concrete, it is allowed for ground I-beams to be used as an intermediary between tank and concrete as opposed to mounting the tank directly to concrete. See Ground I-Beam Directive below for the required minimum number of I-beams for this condition. I-beams shall have a min. spacing of 18", typ. (Note: I-beams and tank flanges shall be 3/16" min. thick and Fy = 36 ksi min. steel.

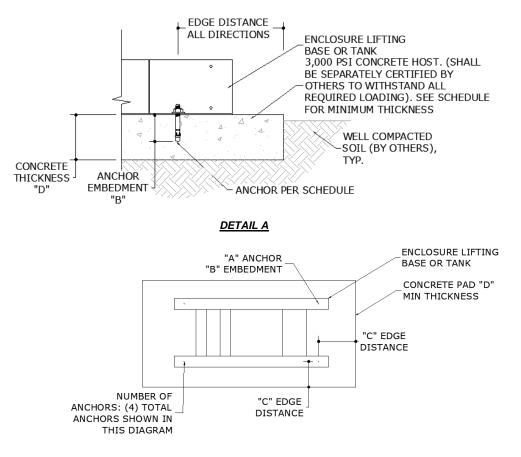
GROUND I-BEAM DIRECTIVE						
FUEL T	ANK	I-BEAMS	S REQUIRED			
LITERS	GAL	ALONG LENGTH OF ENCLOSURE	ALONG REMAINING TANK LENGTH			
1529-5047	404-1333	7				
5042-9993	1332-2640	6	1 FOR EVERY 48" IN TANK LENGTH BEYOND ENCLOSURE LENGTH			
11602-13325	3065-3520	5				

- For each I-beam top connection to tank, employ (2) M20 UNC GR. 8.8 steel thru-bolts with 2" min. OD washers top and bottom, (1) thru-bolt per side, typ. Position thru-bolt no more than 6" away from the end of the I-beam, typ. Provide 1.5" min. edge distance between the thru-bolt and any edge of the members in contact (tank flange and I-beam flange).

- For each I-beam bottom connection to concrete, employ (2) 3/4" Ø HILTI KWIK BOLT 3 Carbon Steel Expansion Anchors with 4-3/4" embedment and 18" min. spacing from neighboring anchors, (1) anchor per side, typ. Provide 6" min. edge distance between the anchor and any edge of the concrete, typ. Provide 1.5" min. edge distance between the anchor and any edge of I-beam flange. Position anchor no more than 6" away from the end of the I-beam, typ. Provide 8" min. thick 4 ksi concrete (concrete by others).

**For the case in which no tank is used, the genset skid shall mount directly to the concrete using the starred number of anchors with the specifications stated in the directive. Skid flange shall be 3/16" min. thick and Fy = 36 ksi min. steel.

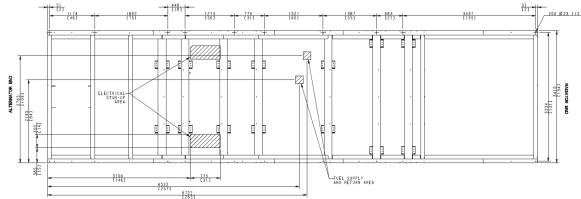
***The unit skid shall mount directly to the tank with the specified number of M20 UNC GR.8.8 thru-bolts with 2" min. OD washers top and bottom, typ. Provide 1.5" min. edge distance from edge of members in contact (skid flange and tank flange). Members in contact shall be 3/16" min. thick Fy = 36 ksi min. steel.

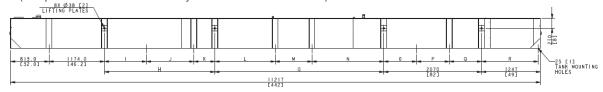

****For skid anchorage to tank, it is allowed for I-beams to be used as an intermediary between skid and tank as opposed to mounting the tank directly to concrete for the associated starred cases only, in which the width of the tank exceeds the width of the unit. A minimum of (6) I-beams with 18" min. spacing shall be implemented for this condition. Skid flange, tank flange, and I-beams shall be 3/16" min. thick Fy = 36 ksi min. steel.

- For each I-beam top connection to skid, employ (2) M20 UNC GR. 8.8 steel thru-bolts with 2" min. OD washers top and bottom, (1) thru-bolt per side, typ. Position thru-bolt no more than 6" away from the end of the I-beam, typ. Provide 1.5" min. edge distance between the thru-bolt and any edge of the members in contact (skid flange and I-beam flange). (12) total thru-bolts min., (6) min. per long side.

- For each I-beam bottom connection to tank, employ (2) M20 UNC GR. 8.8 steel thru-bolts with 2" min. OD washers top and bottom, (1) thru-bolt per side, typ. Position thru-bolt no more than 6" away from the end of the I-beam, typ. Provide 1.5" min. edge distance between the thru-bolt and any edge of the members in contact (I-beam flange and tank flange). (12) total thru-bolts min., (6) min. per long side.

CORP. OFC: 160 SW 12TH AVENUE SUITE 106, DEERFIELD BEACH, FLORIDA 33442 Page 4 of 7 (954) 354-0660 | (866) 396-9999 | TEAM@ENGINEERINGEXPRESS.COM | ENGINEERINGEXPRESS.COM


SECTION 6 ANCHOR ILLUSTRATIONS


ANCHORAGE PLAN VIEW ILLUSTRATION

Instructions:

- For enclosures anchored directly to host without fuel tank, go to ADV-9189 and place the specified anchors using the 1. mounting locations. See below example for a sample lifting base's mounting holes:
- (Sample lifting base for illustration only. Not included in certification) 2.

3. For enclosures mounted on fuel tanks and anchored to host, go to ADV-9189 and place the specified anchors using the mounting locations. See below example for fuel tank's mounting holes: (Sample fuel tank for illustration only. Not included in certification)

Refer to KOHLER ADV-9189 for additional installation instruction directives. 4.

CORP. OFC: 160 SW 12TH AVENUE SUITE 106, DEERFIELD BEACH, FLORIDA 33442

Page 5 of 7

(954) 354-0660 | (866) 396-9999 | TEAM@ENGINEERINGEXPRESS.COM | ENGINEERINGEXPRESS.COM Copyright © Engineering Express® All Rights Reserved

SECTION 7: WIND INSTALLATION REQUIREMENTS:

The following are requirements for wind-rated installation:

- 1. The design of post-installed anchors in concrete used for the component anchorage has been evaluated by this engineer for wind applications in accordance with ASCE 7 as reference herein.
- Anchors must be installed in minimum 4000 psi compressive strength normal weight concrete. Concrete aggregate must comply with ASTM C33. Installation in structural lightweight concrete is not permitted unless otherwise approved by the structural engineer of record.
- 3. Anchors must be installed to the torque specification as recommended by the anchor manufacturer to obtain maximum loading.
- 4. Anchors must be installed in the locations specified in the Kohler ADV-9189 dimension print in correlation with signed and sealed engineering herein. The more stringent requirement from either document shall apply in cases of uncertainty.
- 5. Anchor plates from Kohler must be installed at each anchor location between anchor head and equipment for tension load distribution.
- 6. Concrete floor slab and concrete housekeeping pads must be designed, and rebar reinforced for wind applications in accordance with ACI 318 and ASCE 7 as referenced herein
- 7. All housekeeping pad thicknesses must be designed in accordance with pre-qualification test report or a minimum of 1.5x the anchor embedment depth, whichever is largest.
- 8. All housekeeping pads must be doweled or cast into the building structural floor slab and designed for wind application per appropriate code requirements for the subject jurisdiction and as approved by the structural engineer of record.
- 9. Wall mounted equipment must be installed to a rebar reinforced structural concrete wall that is designed for wind applications and approved by the engineer of record to resist the added wind loads from the components being anchored to the wall.
- 10. Floor mounted equipment (with or without housekeeping pad) must be installed to a rebar reinforced structural concrete floor that is designed for wind applications and approved by the engineer of record to resist the added wind loads from components being anchored to the floor.
- 11. When installing to a floor, rebar interference must be considered.
- 12. Attaching equipment to any floor other than those constructed of structural concrete and designed to accept the wind loads from said equipment is not permitted by this specification and beyond the scope of this certification.
- 13. Attaching equipment to any concrete block walls or cinder block walls is not permitted by this specification and beyond the scope of this certification.
- 14. Rooftop installations are not permitted by this evaluation and is beyond the scope of this certification.
- 15. Installation upon rooftop curbs shall be coordinated with the curb manufacturer and the Structural Engineer of Record. Any curb or concrete pad that supports the RTU unit is beyond the scope of this certification.
- 16. Anchor locations, size, type and load requirements shall be as specified on the certified installation specification. Mounting requirements details such as brand, type, embedment depth, edge spacing, anchor spacing, concrete strength, wall bracing, and special inspection must be outlined and approved by the project Structural Engineer of Record to withstand the wind anchor loads as defined on the certified installation specification. The installing contractor is responsible for the proper installation of all anchors and mounting hardware, observing the mounting requirement details outlined by the Engineer of Record. Contact Kohler if a detailed Wind Installation Calculation Package is required.
- 17. Electrical wiring, piping, duct and other connections to the equipment is the responsibility of the installing contractor. It is necessary that these remain intact, functional and do not inhibit the functionality of the generator set after a wind event.
- 18. Concrete pad dimensions are minimum values to satisfy only the anchor bolt requirements. The pad must be designed by the project structural engineer of record.

TERMINOLOGY (CONTINUED):

The following abbreviations may appear in this report: "ASCE" for "American Society of Civil Engineers", "ASD" for "Allowable Stress Design", "FBC" for "Florida Building Code", "FLCA" for "Florida Certificate of Authorization", "FMC" for "Florida Mechanical Code", "GR." For "grade", "HVAC" for "heating, ventilation, and air conditioning", "max." for "maximum", "min." for "minimum", "NTS" for "not to scale", "OD" for "outer diameter", "PE" for "Professional Engineer", "psf" for "pounds per foot squared (lb/ft2)", "SAE" for "Society of Automotive Engineering", "SECB" for "Structural Engineering Certification Board", "SMS" for "sheet metal screws", "SS" for "stainless steel", "TER" for "Technical Evaluation Report", "typ." For "typical", "U.N.O." for "unless noted otherwise", "w/o" for "without", "#" for "number", and "Ø" for "diameter". For additional abbreviation/terminology clarifications, please contact this office.

LIMITATIONS & CONDITIONS OF USE (CONTINUED):

Host Structure:

The supporting host structure shall be designed to resist all superimposed loads as determined by others on a site-specific basis as may be required by the Authority Having Jurisdiction. No evaluation is offered for the host supporting structure by use of this document;

Production Drawings:

The following drawings shall be accessible if required for a full permit application to be submitted to the Authority Having Jurisdiction in conjunction with this TER:

- Electrical schematic(s)
- Final assembly drawings and parts lists sufficient to detail primary components, operator controls, and their locations .
- Complete set of mechanical drawings for all machined parts
- Complete part specifications (including manufacturer's model numbers, size, ratings, etc.) for all purchased parts
- Specification sheets for all parts/components .
- Drawings showing all construction details
- Product label drawing(s) showing all required marking information. The label drawing shall show the proposed label location on the equipment and artwork showing the manufacturer's name, address, model and serial numbers, equipment ratings, warning markings.

Drawing and Change Control:

The manufacturer shall establish a system of product configuration control that shall allow no unauthorized changes to the product. Changes to critical documents, identified in this Technical Evaluation Report, must be reported to, and authorized by, this office prior to implementation for production.

Survivability:

This evaluation report is valid for a newly installed unit and does not include certification of the product beyond a design event if impacted. Inspections shall be implemented during annual equipment maintenance or after a named storm; all fasteners and cabinet components are to be verified, and all damaged, loose, corroded and/or broken fasteners and cabinet components shall be replaced to ensure structural integrity against hurricane wind forces. Contact this office for any reevaluation needs as designated by the Authority Having Jurisdiction.

Durability:

Components or component assemblies shall not deteriorate, crack, fail, or lose functionality due to galvanic corrosion or weathering. All supporting components which are permanently installed shall be protected against corrosion, contamination, and other such damage at all times. Each component or component assembly shall be supported and oriented in its intended installation position. All exposed plastic components shall be certified to resist sunlight exposure as specified by ASTM B117, or ASTM G155 in Broward or Miami Dade counties.

Extent of Certification:

As described above, this certification pertains to the structural integrity of the unit components listed herein, subject to the limitations and criteria stated herein. Operability and water infiltration are outside the bounds of this certification. No other certifications are intended. This evaluation alone does not offer any evaluation for large missile impact debris or cyclic wind requirements; see TER-20-25965.2 for these evaluations.

Remarks	Drawn	Checked	Date	
Initial Issue	EPR	RWN	7/29/20	
Amend Anchor Directive	EPR	RWN	8/7/20	

CORP. OFC: 160 SW 12TH AVENUE SUITE 106, DEERFIELD BEACH, FLORIDA 33442 Page 7 of 7

(954) 354-0660 | (866) 396-9999 | TEAM@ENGINEERINGEXPRESS.COM | ENGINEERINGEXPRESS.COM Copyright © Engineering Express® All Rights Reserved

Kohler Standby/Prime Generator Set Test Program

Testing is an integral part of quality assurance. In keeping with our uncompromising commitment to quality, safety, and reliability, every Kohler Standby/Prime power generator set undergoes an extensive series of prototype and production testing.

Prototype Testing

Prototype testing includes the potentially destructive tests necessary to verify design, proper function of protective devices and safety features, and reliability expectations. Kohler's prototype testing includes the following:

- Alternator temperature rise test per NEMA MG1-32.6. Standby and prime ratings of the alternator are established during this test.
- Maximum power test to assure that the prime mover and alternator have sufficient capacity to operate within specifications.
- Alternator overload test per NEMA MG1-32.8.
- Steady-state load test to ensure voltage regulation meets or exceeds ANSI C84.1, NEMA MG1-32.17 requirements and to verify compliance with steadystate speed control specifications.
- Transient test to verify speed controls meets or exceeds specifications.
- Transient load tests per NEMA MG1-32.18, and ISO 8528 to verify specifications of transient voltage regulation, voltage dip, voltage overshoot, recovery voltage, and recovery time.
- Motor starting tests per NEMA MG1-32.18.5 to evaluate capabilities of generator, exciter, and regulator system.
- Three-phase symmetrical short-circuit test per NEMA MG1-32.13 to demonstrate short circuit performance, mechanical integrity, ability to sustain short-circuit current.
- Harmonic analysis, voltage waveform deviation per NEMA MG1-32.10 to confirm that the generator set is producing clean voltage within acceptable limits.

- Generator set cooling and air flow tests to verify maximum operating ambient temperature.
- Reliability tests to demonstrate product durability, followed by root cause analysis of discovered failures and defects. Corrective action is taken to improve the design, workmanship, or components.
- Acoustical noise intensity and sound attenuation effects tests.

Production Testing

In production, Kohler Standby/Prime generator sets are built to the stringent standards established by the prototype program. Every Kohler generator set is fully tested prior to leaving the factory. Production testing includes the following:

- Stator and exciter winding high-potential test on all generators. Surge transient tests on stators for generators 180 kW or larger. Continuity and balance tests on all rotors.
- One-step, full-load pickup tests to verify that the performance of each generator set, regulator, and governor meets published specifications.
- Regulation and stability of voltage and frequency are tested and verified at no load, 1/4 load, 1/2 load, 3/4 load, and full-rated load.
- Voltage, amperage, frequency and power output ratings verified by full-load test.
- The proper operation of controller logic circuitry, prealarm warnings, and shutdown functions is tested and verified.
- Any defect or variation from specification discovered during testing is corrected and retested prior to approval for shipment to the customer.

Torsional analysis data, to verify torsional effects are not detrimental and that the generator set will provide dependable service as specified, is available upon request.

Kohler offers other testing at the customer's request at an additional charge. These optional tests include power factor testing, customized load testing for specific application, witness testing, and a broad range of MIL-STD-705c testing. A certified test report is also available at an additional charge.

KOHLER CO. Kohler, Wisconsin 53044 Phone 920-565-3381, Fax 920-459-1646 For the nearest sales/service outlet in the US and Canada, phone 1-800-544-2444 KohlerPowerSystemscom

G18-56 12/05b

PreStartup Checklist

Generator Set/Transfer Switch Installation Checklist

This document has generic content and some items may not apply to some applications. Check only the items that apply to the specific application. Read and understand all of the safety precautions found in the Operation and Installation Manuals. Make the following installation checks before performing the Startup Checklist.

Note: Use this form as a general guide, along with any applicable codes or standards. Comply with all applicable codes and standards. Improper installation voids the warranty.

Equipment Room or Weather Housing	Does Not					
Does Not	Yes Apply					
	installed?					
1. Is the equipment installed in a fire-resistant room (made of non-combustible material) or in an outdoor weather housing?	26. Is the specified silencer installed and are the hanger and mounting hardware tightened?					
 Is there adequate clearance between the engine and floor for service maintenance? 	27. Is a heat-isolating thimble(s) installed at points where exhaust lines pass through combustible wall(s) or partition(s)?					
3. Is there emergency lighting available at the equipment room or weather housing?	28. Is the exhaust line free of excessive bends and					
4. Is there adequate heating for the equipment room or outdoor weather housing?	restrictions? Is the backpressure within specifications?					
5. Is the equipment room clean with all materials not related to the emergency power supply system	29. Is the exhaust line installed with a downward pitch toward the outside of the building?					
removed?	30. Is the exhaust line protected from entry by rain, snow, and animals?					
protection system?	31. Does the exhaust system outlet location prevent entry of exhaust gases into buildings or structures?					
Engine and Mounting	- 🗋 📋 32. Are individuals protected from exposure to high					
 7. Is the mounting surface(s) properly constructed and leveled? 	temperature exhaust parts and are hot parts safety decals present?					
8. Is the mounting surface made from non-combustible material?	AC Electrical System					
 9. Was the generator-to-engine alignment performed after attaching the skid to the mounting base? Generator sets with two-bearing generators require 	33. Does the nameplate voltage/frequency of the generator set and transfer switch match normal/utility source ratings?					
alignment.	34. Do the generator set load conductors have adequate					
	ampacity and are they correctly connected to the circuit breakers and/or the emergency side of the transfer switch?					
10. Is the engine crankcase filled with the specified oil?	□ □ 35. Are the load conductors, engine starting cables,					
Cooling and Ventilation 11. Is the cooling system filled with the manufacturer's	battery charger cables, and remote annunciator leads installed in separate conduits?					
specified coolant/antifreeze and purged of air?	36. Is the battery charger AC circuit connected to the corresponding voltage?					
louvers adjusted and ventilation fan motor(s) connected to the corresponding voltage)?	Transfer Switch, Remote Control System, Accessories					
13. Is the radiator duct properly sized and connected to the air vent or louver?	 37. Is the transfer switch mechanism free of binding? Note: Disconnect all AC sources and operate the transfer switch manually. 					
14. Are flexible sections installed in the cooling water lines?	 38. Are the transfer switch AC conductors correctly connected? Verify lead designations using the 					
Fuel	appropriate wiring diagrams.					
□ □ 15. Is there an adequate/dedicated fuel supply?	□ □ 39. Is all other wiring connected, as required?					
□ □ 16. Are the fuel filters installed?	Batteries and DC Electrical System					
□ □ 17. Are the fuel tanks and piping installed in accordance with applicable codes and standards?	40. Does the battery(ies) have the specified CCA rating and voltage?					
18. Is there adequate fuel transfer tank pump lift capacity and is the pump motor connected to the corresponding voltage?	41. Is the battery(ies) filled with electrolyte and connected to the battery charger?					
 Is the fuel transfer tank pump connected to the emergency power source? 	42. Are the engine starting cables connected to the battery(ies)?					
 20. Are flexible fuel lines installed between the engine fuel inlet and fuel piping? 	43. Do the engine starting cables have adequate length and gauge?					
 21. Is the specified gas pressure available at the fuel regulator inlet? 	44. Is the battery(ies) installed with adequate air ventilation?					
 22. Does the gas solenoid valve function? 	□ □ 45. Are the ends of all spark plug wires properly seated onto the coil/distributor and the spark plug?					
23. Are the manually operated fuel and cooling water valves installed allowing manual operation or bypass	Special Requirements					
of the solenoid valves?	□ □ 46. Is the earthquake protection adequate for the					
Exhaust	equipment and support systems?					
24. Is the exhaust line sized per guidelines and does it have flexible connector(s)? Is the flexible connector(s) straight?	- 🗋 🔲 47. Is the equipment protected from lightning damage?					

Generator Set/Transfer Switch Startup Checklist

This document has generic content and some items may not apply to some applications. Check only the items that apply to the specific application. Read and understand all of the safety precautions found in the Operation and Installation Manuals. Complete the Installation Checklist before performing the initial startup checks. Refer to Service Bulletin 616 for Warranty Startup Procedure Requirements regarding generator set models with ECM-controlled engines.

Does Not			Does Not		
Yes Apply	1.	Verify that the engine is filled with oil and the cooling system is filled with coolant/antifreeze.		29.	Cl to
	2.	Prime the fuel system.		30.	Ċ
	3.	Open all water and fuel valves. Temporarily remove the radiator cap to eliminate air in the cooling system. Replace radiator cap in step 21.		31.	ph sc O
	4.	Place the generator set master switch in the OFF/RESET position. Observe Not-in-Auto lamp and alarm, if equipped, on the controller.		32. 33.	to M Cl
	5.	Press the lamp test, if equipped on controller. Do all the alarm lamps on the panel illuminate?		00.	th
	6.	Open the main line circuit breakers, open the safeguard breaker, and/or remove fuses connected to the generator set output leads.		34. 25	PI pc CI
	7.	Turn down the speed control (electronic governor) or speed screw (mechanical governor).*		35.	se
	8.	Verify the presence of lube oil in the turbocharger, if equipped. See the engine and/or generator set operation manual.		36.	PI O
	9.	Place the generator set master switch in the RUN position. Allow the engine to start and run for several		37.	O th co
	10	seconds.		38.	R
	10. 11.	Verify that the day tank, if equipped, is energized.			cc th
	11.	Place the generator set master switch in the OFF/RESET position. Check for oil, coolant, and exhaust leaks.		39.	Cl to
	12.	Turn on the water/oil heaters and fuel lift pumps.		40	sv Cl
	13.	indication.		40.	th
	14.	Place the generator set master switch in the RUN position. Verify whether there is sufficient oil pressure. Check for oil, coolant, and exhaust leaks.		41.	Pl or pe
	15.	Close the safeguard circuit breaker. Adjust the engine speed to 50/60 Hz if equipped with an electronic governor or to 52.8/63 Hz if equipped with a mechanical governor.*			pr op pc
	16.	If the speed is unstable, adjust according to the appropriate engine and/or governor manual.*		42.	Relo
	17.			43. 44.	Ve ph Re
	18.	Allow the engine to reach normal operating coolant temperature.			no re de
	19.	Check the operating temperature on city water-cooled models and adjust the thermostatic valve as necessary.		45.	Al
	20.	Manually overspeed the engine to cause an engine shutdown (68-70 Hz on 60 Hz models and 58-60 Hz on 50 Hz models). Place the generator set master switch in the OFF/RESET position.*		46.	de Se ex
	21.			47.	Ve ar
		replace the radiator cap. Verify that all hose clamps are tight and secure.		48.	lf fo
	22.	position.		49.	re Ve
	23.	Verify the engine low oil pressure and high coolant temperature shutdowns.*			se tig
		Check the overcrank shutdown.*		50.	Ve er
		Place the generator set master switch in the OFF/RESET position.			In of
		Open the normal source circuit breaker or remove fuses to the transfer switch.		51.	w
		Disconnect the power switching device and logic controller wire harness at the inline disconnect plug at the transfer switch.			Wa
	28.	Manually transfer the load to the emergency source.			

- Close the normal source circuit breaker or replace fuses o the transfer switch.
- Check the normal source voltage, frequency, and phase sequence on three-phase models. The normal source must match the load.
- Open the normal source circuit breaker or remove fuses o the transfer switch.
- Manually transfer the load to the normal source.
- Close the generator set main line circuit breakers, close he safeguard breaker, and/or replace the fuses connected to the transfer switch.
- Place the generator set master switch in the RUN osition
- Check the generator set voltage, frequency, and phase sequence on three-phase models. The generator set nust match normal source and load.
- Place the generator set master switch in the OFF/RESET position.
- Open the generator set main line circuit breakers, open he safeguard breaker, and/or remove the fuses connected to the transfer switch.
- Reconnect the power switching device and logic controller wire harness at the inline disconnect plug at he transfer switch.
- Close the normal source circuit breaker or replace fuses o the transfer switch. Place the generator set master witch to the AUTO position
- Close the generator set main line circuit breakers, close he safeguard breaker, and/or replace the fuses connected to the transfer switch.
- Place the transfer switch in the TEST position (load test or open normal source circuit breaker). NOTE: Obtain ermission from the building authority before roceeding. This procedure tests transfer switch pperation and connects building load to generator set
- Readjust frequency to 50 or 60 Hz with total building oads
- /erify that the current phase is balanced for three hase systems.
- Release the transfer switch test switch or close the normal circuit breaker. The transfer switch should etransfer to the normal source after appropriate time lelav(s).
- Allow the generator set to run and shut down automatically after the appropriate cool down time lelav(s).
- Set the plant exerciser to the customer's required exercise period, if equipped.
- /erify that all options on the transfer switch are adjusted and functional for the customer's requirements.
- f possible, run the building loads on the generator set or several hours or perform the load bank test if equired.
- /erify that all the wire connections from the generator set to the transfer switch and optional accessories are ight and secure.
- /erify that the customer has the appropriate engine/generator set and transfer switch literature. nstruct the customer in the operation and maintenance of the power system.
- Fill out the startup notification at this time and send the white copy to the Generator Warranty Dept. Include the varranty form if applicable.
- Some models with an Engine Electronic Control Module (ECM) may limit or prohibit adjusting the engine speed or testing shutdowns. Refer to appropriate documentation available from the manufacturer.