Submittal Package

TABLE OF CONTENTS

Section	Sub-Section	Literature
Quote		
Model 250REOZJE Spec Sheets		
Specification Sheet	Controller	G6-161
Specification Sheet	Circuit Breaker	G6-88
Specification Sheet	Circuit Breaker	Circuit Breaker Trip Curves
Specification Sheet	Circuit Breaker	P_R Frame Breaker
Specification Sheet	Battery Charger	G6-146
Specification Sheet	Weather/ Sound Enclosure Packaging	Enclosure Package
Specification Sheet	Engine Block Heater	G6-170
Specification Sheet	Voltage Regulator	Voltage Regulator
Alternator Data		
	Alternator Data Sheet	4UA10
Sound Data		
	Sound Data Sheet	Sound Data
Emissions Data		
	Emissions Data	Emissions Data
	EPA Certificate	EPA Certificate
DimensionalDrawings		
	Generator	ADV-7900
	Accessories	ADV-7890
	Controller	ADV-7935
	Enclosure	ADV-7644

State Tank

ADV-7645

KOHLER®

Wirin	qSchei	maticD	iagrams

WillingScrietifaticDiagraffis		
	Controller Schematic Diagram	ADV-7933
	Controller Schematic Diagram	ADV-7970
	Controller Wiring Diagram	GM77079
	Controller Wiring Diagram	GM78714
	Interconnection Diagram	GM78246
	Voltage Diagram	ADV-5875
Misc		
50	Battery	244578
	Battery Charger	GM87448
	Battery Charger Assembly	GM94920
	Block Heater	GM76113
	Block Heater	GM76120
	Circuit Breaker	GM24181
	Circuit Breaker Mounting	ADV-7372
Warranty		
warranty	Marranti	TP-5374
	Warranty	
	Warranty	TP-5561
Certification		
	ISO9001 Certificate	G15-152
	Prototype Test Summary	G18-462
	Prototype Test Certificate	G18-56
Pre-Startup Checklist		

Pre-Startup Checklist

PreStartUpCheckList

Generator

Kohler Model: 250REOZJE

This diesel generator set equipped with a 4UA10 alternator operating at 120/208 volts is rated for 250 kW/313 kVA. Output amperage: 867

Standard Features:

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- Approved for use with certified renewable
 Hydrotreated Vegetable Oil (HVO) / Renewable Diesel
 (RD) fuels compliant with EN15940/ASTM D975.
- The generator set and its components are prototypetested, factory-built, and production-tested.
- The 60 Hz generator set offers a UL 2200 listing.
- The generator set accepts rated load in one step.
- The 60 Hz generator set meets NFPA 110, Level 1, when equipped with the necessary accessories and installed per NFPA standards.
- The generator set complies with ISO 8528-5, Class G2, requirements for transient performance in all generator set configurations. Select the Decision-Maker□ 550 controller for improved voltage regulation and ISO 8528-5, Class G3, compliance.
- The 60 Hz generator set engine is certified by the Environmental Protection Agency (EPA) to conform to Tier 3 nonroad emissions regulations.
- A one-year limited warranty covers all systems and components. Two-, five-, and ten-year extended warranties are also available.
- Tier 3 EPA-Certified for Stationary Emergency Applications
- Alternator Protection
- · Battery Rack and Cables
- Customer Connection box with field-connection terminal blocks.
- Local Emergency Stop Switch
- · Oil Drain Extension
- · Operation and Installation Literature

Other Features:

- Kohler designed controllers for one-source system integration and remote communication.
- The low coolant level shutdown prevents overheating (standard on radiator models only). Integral vibration isolation eliminates the need for under-unit vibration spring isolators.
- Mount up to three circuit breakers to allow circuit portection of selected priority loads.

Alternator Features:

- The unique Fast-Response™ II excitation system delivers excellent voltage response and short circuit capability using a permanent magnet (PM)-excited alternator.
- The brushless, rotating-field alternator has broad range reconnectability.

Qty Description

250REOZJE Generator System

2 250REOZJE Generator Set

Includes the following:

Literature Languages English

Approvals and Listings UL2200 Listing

Engine 250REOZJE, 24V, 60Hz
Nameplate Rating Standby 130C Rise

Voltage 60Hz, 120/208V, Wye, 3Ph, 4W

Alternator 4UA10

Cooling System Unit Mounted Radiator, 50C

Skid and Mounting

Air Intake

Standard Duty

Controller

APM402

Enclosure Type

Sound

Enclosure Material

Steel

Enclosure Silencer Internal Silencer

Fuel Tank Type Standard
Fuel Runtime (Approx.) 24 Hours
Subbase Fuel Tank Capacity 472 Gallons

Fuel Tank Options Inner Tank Leak Alarm

Starting Aids, Installed 2500W,90-120V,1Ph,w/Valves

Electrical Accy.,Installed Battery, 2/12V, Wet
Electrical Accy.,Installed Battery Charger, 10A

Electrical Accy.,Installed Run Relay

Electrical Accy.,Installed 2 Input/5 OutputModule

 Rating, LCB 1
 100% Rated

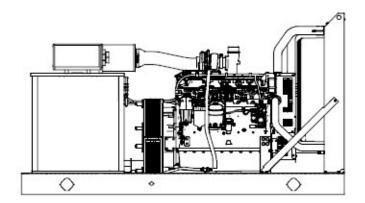
 Amps, LCB 1
 1000

Trip Type, LCB 1 Electronic, LSI
Interrupt Rating LCB 1 35kA at 480V
Fuel Lines, Installed Flexible Fuel Lines

Exceeds LTL Shipping Height Add'l Shipping Charge Accepted

Miscellaneous Accy,Installed Coolant in Genset

Warranty 5 Year Comprehensive


Testing, Additional Power Factor Test, 0.8, 3Ph Only

2 Lit Kit, General Maint, 250REOZJE

Spec Sheets

KOHLER®

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- Approved for use with certified renewable Hydrotreated Vegetable Oil (HVO) / Renewable Diesel (RD) fuels compliant with EN15940/ASTM D975.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- The 60 Hz generator set offers a UL 2200 listing.
- The generator set accepts rated load in one step.
- The 60 Hz generator set meets NFPA 110, Level 1, when equipped with the necessary accessories and installed per NFPA standards.
- The generator set complies with ISO 8528-5, Class G2, requirements for transient performance in all generator set configurations. Select the Decision-Maker ☐ 550 controller for improved voltage regulation and ISO 8528-5, Class G3, compliance.
- The 60 Hz generator set engine is certified by the Environmental Protection Agency (EPA) to conform to Tier 3 nonroad emissions regulations.
- A one-year limited warranty covers all systems and components. Two-, five-, and ten-year extended warranties are also available.
- Tier 3 EPA-Certified for Stationary Emergency Applications
- · Alternator Protection
- · Battery Rack and Cables
- Customer Connection box with field-connection terminal blocks.
- · Local Emergency Stop Switch
- · Oil Drain Extension
- · Operation and Installation Literature

Alternator Features

- The unique Fast-Response™ II excitation system delivers excellent voltage response and short circuit capability using a permanent magnet (PM)-excited alternator.
- The brushless, rotating-field alternator has broad range reconnectability.

Other Features

- Kohler designed controllers for one-source system integration and remote communication.
- The low coolant level shutdown prevents overheating (standard on radiator models only). Integral vibration isolation eliminates the need for under-unit vibration spring isolators.
- Mount up to three circuit breakers to allow circuit portection of selected priority loads.

Alternator	Voltage	Ph	Hz	Peak kVA	kW/kVA	Amps
4UA10	120/208	3	60	590	250/313	867

RATINGS: All three-phase units are rated at 0.8 power factor. All single-phase units are rated at 1.0 power factor.

Standby Ratings: Standby ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Ratings are in accordance with ISO-3046/1, BS5514, AS2789, and DIN 6271.

Prime Power Ratings: Prime power ratings apply to installations where utility power is unavailable or unreliable. At varying load, the number of generator set operating hours is unlimited.

A 10% overload capacity is available for one hour in twelve. Ratings are in accordance with ISO-8528/1, overload power in accordance with ISO-3046/1, BS 5514, AS 2789, and DIN 6271. For limited running time A Tow overload capacity is available to the float in the vertical information bulletin (TIB-101) on ratings guidelines for the complete ratings definitions.

The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever.

GENERAL GUIDELINES FOR DERATION: Altitude: Derate 0.5% per 100 m (328 ft.) elevation above 1000 m (3300 ft.). Temperature: Derate 1.0% per 10?C (18?F) temperature above 25?C (77?F).

Alternator Specifications

Specifications	Alternator
Alternator manufacturer	Kohler
Туре	4-Pole, Rotating-Field
Exciter type	Brushless, Permanent-Magnet
Leads, quantity	12, Reconnectable
Voltage regulator	Solid State, Volts/Hz
Insulation	NEMA MG1
Insulation: Material	Class H
Insulation: Temperature Rise	130 ° C, Standby
Bearing: quantity, type	1, Sealed
Coupling	Flexible Disc
Amortisseur windings	Full
Voltage regulation, no-load to full-load Permanent magnet (PM) alternator	+/-2% Average
550 controller (with 0.5% drift due to temperature variation)	3-Phase Sensing, +/-0.25%
One-Step Load Acceptance	100% of rating
Unbalanced load capability	100% of Rated Standby Current

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling down stream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and dripproof construction.
- Vacuum-impregnated windings with fungus-resistant epoxy varnish for dependability and long life.
- Superior voltage waveform from a two-thirds pitch stator and skewed rotor.
- Fast-Response™ II brushless alternator with brushless exciter for excellent load response.

Engine

Engine Specification

Engine Manufacturer	John Deere
Engine Model	6090HF484B
Engine: type	4-Cycle, Turbocharged, Charge Air Cooled
Cylinder arrangement	6, Inline
Displacement, L (cu. in.)	9.0 (548)
Bore and stroke, mm (in.)	118.4 x 136 (4.66 x 5.35)
Compression ratio	16.0:1
Piston speed, m/min. (ft./min.)	457 (1500)
Main bearings: quantity, type	7, Replaceable Insert
Rated rpm	1800
Max. power at rated rpm, kWm (BHP)	287 (385)
Cylinder head material	Cast Iron
Crankshaft material	Forged Steel
Valve (exhaust) material Intake	Chromium-Silicon Steel
Valve (exhaust) material	Stainless Steel
Governor: type, make/model	JDEC Electronic, L14 Denso HP4
Frequency regulation, no-load to-full load	Isochronous
Frequency regulation, steady state	± 0.25%
Frequency	Fixed
Air cleaner type, all models	Dry

Exhaust

Exhaust System

Exhaust Manifold Type Dry
Exhaust flow at rated kW,m3/min. (cfm) 54.1 (1911)
Exhaust temperature at rated kW, dry exhaust, ° C (° F) 625 (1157)

Maximum allowable back pressure, kPa (in. Hg) Min. 0 (0) Max. 7.5 (2.2)

Exh. outlet size at eng. hookup, mm (in.) 98 (3.86)

Engine Electrical

Engine Electrical System

Battery charging alternator: Ground (negative/positive)

Battery charging alternator: Ground (negative/positive)

Negative

Battery charging alternator: Volts (DC)

Battery charging alternator: Ampere rating

Starter motor rated voltage (DC)

Battery, recommended cold cranking amps (CCA): Qty., CCA rating each

Battery voltage (DC)

12

Fuel

Fuel System

Fuel type Diesel

Fuel supply line, min. ID, mm (in.)

Fuel return line, min. ID, mm (in.)

Max. lift, fuel pump: type, m (ft.)

Max. fuel flow, Lph (gph)

Fuel prime pump

Diesel

11.0 (0.044)

6.0 (0.25)

Electronic, 3(10)

240 (63.4)

Euel prime pump

Electronic

Fuel Filter Secondary 2 Microns @ 98% Efficiency

Fuel Filter Primary 10 Microns
Fuel Filter Water Separator Yes

Recommended fuel #2 Diesel/HVO/RD

Lubrication

Lubrication System

Type Full Pressure
Oil pan capacity, L (qt.) 32.5 (34.4)
Oil pan capacity with filter, L (qt.) 33.4 (35.3)
Oil filter: quantity, type 1, Cartridge
Oil cooler Water-cooled

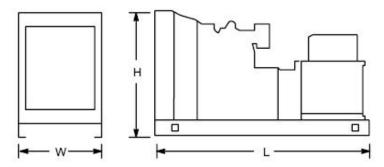
Cooling

Ambient temperature, ° C (° F)	50 (122)
Engine jacket water capacity, L (gal.)	16 (4.25)
Radiator system capacity, including engine, L (gal.)	36 (9.5)
Engine jacket water flow, Lpm (gpm)	265 (70)
Heat rejected to cooling water at rated kW, dry exhaust, kW (Btu/min.)	97 (5521)
Heat rejected to air charge cooler at rated kW, dry exhaust, kW (Btu/min.)	70.5 (4013)
Water pump type	Centrifugal
Fan diameter, including blades, mm (in.)	863.6 (34.0)
Fan, kWm (HP)	9.0 (12.1)
Max. restriction of cooling air, intake and discharge side of radiator, kPA (in. H20)	0.125 (0.5)

Operation Requirements

Air Requirements

Radiator-cooled cooling air, m3/min. (scfm) *	368.1 (13000)	
Combustion air, m3/min. (cfm)	21.8 (770)	
Heat rejected to ambient air: Engine, kW (Btu/min.)	53.8 (3060)	
Heat rejected to ambient air: Alternator, kW (Btu/min.)	20.6 (1170)	


^{*}Air density = 1.20 kg/m3 (0.075 lbm/ft3)

Fuel Consumption

Diesel, Lph (gph), at % load	Rating
Standby Fuel Consumption at 100% load	66.5 Lph (17.6 gph)
Standby Fuel Consumption at 75% load	50.4 Lph (13.3 gph)
Standby Fuel Consumption at 50% load	35.0 Lph (9.2 gph)
Standby Fuel Consumption at 25% load	20.5 Lph (5.4 gph)
Prime Fuel Consumption at 100% load	59.1 Lph (15.6 gph)
Prime Fuel Consumption at 75% load	45.3 Lph (12.0 gph)
Prime Fuel Consumption at 50% load	31.6 Lph (8.3 gph)
Prime Fuel Consumption at 25% load	18.4 Lph (4.9 gph)
Continuous Fuel Consumption at 0% load	Fuel consumption is up to 4% higher when using HVO/RD than #2 ULSD.

Dimensions and Weights

Dim Weight Spec	Dim Weight Value	
Fuel	Diesel	
Engine Manufacturer	Diesel	
Overall Size, L x W x H, mm (in.): Wide Skid	3000 x 1300 x 1891 (118.1 x 51.2 x 74.4)	
Weight (radiator model), wet, kg (lb.):	2268-2449 (5000-5400)	

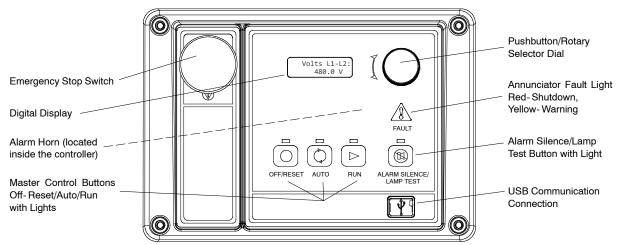
NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

Industrial Generator Set Accessories

Generator Set Controller

APM402

Kohler® APM402 Controller General Description and Function


The APM402 generator set controller provides advanced control, system monitoring, and system diagnostics for optimum performance.

The APM402 controller meets NFPA 110, Level 1 when equipped with the necessary accessories and installed per NFPA standards.

The APM402 controller uses a patented hybrid voltage regulator and unique software logic to manage alternator thermal overload protection features normally requiring additional hardware. Additional features include:

- A digital display and pushbutton/rotary selector dial provide easy local access to data.
- Measurements selectable in metric or English units.
- The controller can communicate directly with a personal computer via a network or serial configuration using SiteTech™ or Monitor III software.
- The controller supports Modbus® protocol. Use with serial bus or Ethernet networks. (Ethernet requires an external Modbus®/Ethernet converter module.)
- Scrolling display shows critical data at a glance.
- Digital display of power metering (kW and kVA).
- Integrated hybrid voltage regulator providing ±0.5% regulation.
- Built-in alternator thermal overload protection.

Modbus® is a registered trademark of Schneider Electric.

User Interface Controls and Components

- Emergency stop switch
- Backlit LCD digital display with two lines of 12 characters (see User Interface Displays for menus)
- Alarm horn indicates generator set shutdown and warning faults
- Environmentally sealed membrane keypad with three master control buttons with lights
 - Off/Reset (red)
 - Auto (green)
 - Run (yellow)
- Pushbutton/rotary selector dial for menu navigation
 - Rotate dial to access main menus

 - Push dial and rotate to access sub menus Press dial for 3 seconds to return to top of main menu
- Annunciator fault light

 System shutdown (red)

 System warning (yellow)

 Alarm silence/lamp test button
 - Alarm silence
- Lamp test
- USB and RS-485 connections
 - Allows software upgrades
 - Provides access for diagnostics
 - PC communication using SiteTech™ or Monitor III software
- Dedicated user inputs

 - Remote emergency stop switch
 Remote 2-wire start for transfer switch
 - Auxiliary shutdown
- Integrated hybrid voltage regulator
- Auto-resettable circuit protection mounted on circuit board.
- One relay output standard. Optional five relay output available.
- One analog and three digital inputs standard. Optional two inputs available.

NFPA 110 Requirements

In order to meet NFPA 110, Level 1 requirements, the generator set controller monitors the engine/generator functions/faults shown below.

- Engine functions:

- Overcrank
 Low coolant temperature warning
 High coolant temperature warning
- High coolant temperature shutdown
- Low oil pressure shutdown
- Low oil pressure warning
- High engine speed
- Low fuel (level or pressure) * Low coolant level
- EPS supplying load
- High battery voltage
- Low battery voltage
- General functions:
- Master switch not in auto
- Battery charger fault '
- Lamp test
- Contacts for local and remote common alarm Audible alarm silence button
- Remote emergency stop
- * Function requires optional input sensors or kits and is engine dependent, see Controller Displays as Provided by the Engine ECM.

User Interface Displays

The listing below has ● denoting main menus and ○ denoting sub-menus.

- Overview
 - Software version
 - Active shutdowns and warnings (if any are present)
 - Engine run time, total hours Average voltage line-to-line Frequency

 - Average current
 - Coolant temperature
 Fuel level or pressure *

 - Oil pressure
- Battery voltage
- Engine Metering
- Engine speed Oil pressure

- Oil pressure
 Coolant temperature
 Battery voltage
 Generator Metering
 Total power, VA
 Total power, W

 - Rated power, % Voltage, L- L and L- N for all phases
 - Current, L1, L2, L3
 - Frequency
- GenSet Information
 - Generator set model number
 - Generator set serial number Controller serial number
- GenSet Run Time
 - Engine run time, total hours Engine loaded, hours Number of engine starts Total energy, kWh
- GenSet System
 - System voltage
 - System frequency, 50 or 60 Hz
 - System phase, single or three (wye or delta)
 Power rating, kW

 - Amp rating

 - Power type, standby or prime Measurement units, metric or English (user selectable)
 - Alarm silence, always or auto only (NFPA 110)
- Manual speed adjust
- GenSet Calibration
- Voltage, L- L and L- N for all phases Current, L1, L2, L3
- Reset calibration
- Voltage Regulation
- Adjust voltage, ±10%
- Digital Inputs
 - Input settings and status
- Digital Outputs
- Output settings and status
- Analog Inputs
- Input settings and status
- Event history (stores up to 1000 system events)
- Selector Switch (requires initial activation by SiteTech™)

Controller Features

- AC Output Voltage Regulator Adjustment. The voltage adjustment provides a maximum of ±10% of the system voltage.
- Alarm Silence. The controller can be set up to silence the alarm horn only when in the AUTO mode for NFPA-110 application or Always for user convenience.
- Alternator Protection. The controller provides generator set overload and short circuit protection matched to each alternator for the particular voltage/phase configuration.
- Automatic Restart. The controller automatic restart feature initiates the start routine and recrank after a failed start attempt.
- Common Failure Relay. This relay is integrated on the controller circuit board. Contacts are rated 2 amps at 32 VDC or 0.5 amp at 120 VAC.
- Communication. Controller communication is available.
- Cyclic Cranking. The controller has programmable cyclic cranking.
- ECM Diagnostics. The controller displays engine ECM fault code descriptions to help in engine troubleshooting.
- Engine Start Aid. The starting aid feature provides control for an optional engine starting aid.
- Event Logging. The controller keeps a record (up to 1000 entries) for warning and shutdown faults. This fault information becomes a stored record of system events and can be reset.
- Historical Data Logging. Total number of generator set successful starts is recorded and displayed.
- Integrated Hybrid Voltage Regulator. The voltage regulator provides ±0.5% no-load to full-load regulation with three-phase sensing.
- Lamp Test. Press the alarm silence/lamp test button to verify functionality of the indicator lights.
- LCD Display. Adjustable contrast for improving visibility.
- Measurement Units. The controller provides selection of English or metric displays.
- Power Metering. Controller digital display provides kW and kVA.
- Programming Access (USB). Provides software upgrades and diagnostics
- Remote Reset. The remote reset function resets faults and allows restarting of the generator set without going to the master control switch off/reset position.
- Remote Monitoring Panel. The controller is compatible with the Kohler® Remote Serial Annunciator.
- Run Time Hourmeter. The generator set run time is displayed.
- Time Delay Engine Cooldown (TDEC). The TDEC provides a time delay before the generator set shuts down.
- Time Delay Engine Start (TDES). The TDES provides a time delay before the generator set starts.
- Voltage Selection Menu. This menu provides the capability of quickly switching controller voltage calibrations. Requires initial activation using SiteTech™ software. NOTE: Generator set output leads require voltage reconnection.

Controller Functions

The following chart shows which functions cause a warning or shutdown. All functions are available as relay outputs.

Warning causes the fault light to show yellow and sounds the alarm horn signaling an impending problem.

Shutdown causes the fault light to show red, sounds the alarm horn, and stops the generator set.

	Warning Function	Shutdown Function
Engine Functions		
Critically high fuel level *	0	
ECM communication loss		•
ECM diagnostics	•	•
Engine over speed		•†
Engine start aid active		
Engine under speed		•
Fuel tank leak *	0	0
High battery voltage	•	
High coolant temperature	•	•†
High fuel level *	0	
Low battery voltage	•	
Low coolant level		•
Low coolant temperature	•	
Low cranking voltage	•	
Low engine oil level *	0	0
Low fuel level (diesel models) *	0	0
Low fuel pressure (gas models) *	0	
Low oil pressure	•	•‡
No coolant temperature signal		•
No oil pressure signal		•
Overcrank		•†
Speed sensor fault	•	
General Functions		
Alarm horn silenced		
Analog inputs	0	0
Battery charger fault *	•	
Chicago code active *		
Common fault (includes †)		•
Common warning	•	
Digital inputs	0	0
Emergency stop		•†
Engine cooldown (delay) active		-1
Engine start delay active		
Engine started		
Engine stopped		
EPS supplying load		
Generator running		
Input/output communication loss	•	
Internal failure		•
Master switch not in auto	•	
NFPA 110 alarm active		
Remote start		
System ready		
Generator Functions		
AC sensing loss	•	•
Alternator protection		•
Ground fault input *	_	
kW overload	•	_
Locked rotor		
		•
Overfrequency Overvoltage (each phase)		•
Overvoltage (each phase)		•
Underfrequency		•
Undervoltage (each phase) Standard function		•

- Standard function
- o Available user function
- * Function requires optional input sensors or kits and is engine dependent; see Controller Displays as Provided by the Engine ECM.
- † Items included with common fault shutdown

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

	Engine Manufacturer (and Model)						
Controller Displays as Provided by the Engine ECM	Kohler Diesel (KDI M, TM*)	Kohler Diesel (KDI TCR)	Kohler Gas (KG2204, KG2204T)	Kohler Gas (KG6208, KG6208T, KG10V08, KG10V08T)	GM and PSI/Doosan	John Deere	Volvo
Intake air pressure							D
Intake air Temperature		D		D	D	D	D
Coolant level			D	D	D	D	D
Coolant temperature		D	C/S/D	C/S/D	C/S/D	C/S/D	C/S/D
Crankcase pressure							D
ECM battery voltage	S		S/D	S	S		
Engine speed	C/S/D	C/S/D	C/S/D	C/S/D	C/S/D	C/S/D	C/S/D
Fuel pressure		D		C/S/D	C/S/D	C/S†	C/S/D
Fuel temperature		D				S/D	S
Oil level				S†	S†	S†	S†
Oil pressure		C/S/D	D	C/S/D	C/S/D	C/S/D	C/S/D
Oil temperature			S				SD

C = Value displayed on controller, S = Value displayed in Site Tech, D = ECU diagnostic is supported

Note: REOZMD/ROZMC (Mitsubishi engines) have an ECM but do not send signals to the generator set controller.

Note: See the generator set specification sheet for engine model identification.

Controller Specifications

- Power source with circuit protection: 12- or 24-volt DC
- Power drain: 200 milliamps at 12 VDC or 100 milliamps at 24 VDC
- Humidity range: 5% to 95% noncondensing
- Operating temperature range: -40°C to $+70^{\circ}\text{C}$ (-40°F to $+158^{\circ}\text{F}$)
- Storage temperature range: -40°C to +85°C (-40°F to +185°F)
- Standards:
 - CE Directive
 - NFPA 99
 - NFPA 110, Level 1
 - CSA 282-09 UL 508
- O ASTM B117 (salt spray test)
 Panel dimensions—W x H, 229 x 160 mm (9.0 x 6.3 in.)

Communication and PC Software **Available Options**

Refer to G6-76 Monitor III Software and the communication literature for additional communication and PC software information including Modbus® communication.

- Monitor III Software for Monitoring and Control (Windows®-based user interface)
- ☐ Converter, Modbus®/Ethernet. Supports a power system using controllers accessed via the Ethernet. Converter is supplied with an IP address by the site administrator. Refer to G6-79 for converter details.
- Converter, RS-232/RS-485. Supports a power system using controllers accessed via a serial (RS-232) connection.

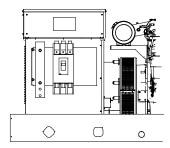
APM402 Available Options

- ☐ Float/Equalize Battery Charger available with 6 or 10 amp output for 12 or 24V DC voltage output. The 10 amp model provides NFPA 110 charging and alarming capability.
- Manual Speed Adjust available for applications using closed transition ATS. Adjustment range for 60 Hz: 1751-1849 rpm (58.2-61.8 Hz) and for 50 Hz: 1451-1549 rpm (48.2-51.8 Hz).
- Prime Power Switch prevents battery drain during generator set non-operation periods and when the generator set battery cannot be maintained by an AC battery charger.
- Remote Emergency Stop Switch available as a wall mounted panel to remotely shut down the generator set.
- ☐ Remote Monitoring Panel. The Kohler® Remote Serial Annunciator (RSA) enables the operator to monitor the status of the generator set from a remote location, which may be required for NFPA 99 and NFPA 110 installations, and up to four Automatic transfer switches.
- Run Relay provides a relay indicating that the generator set is running
- Shunt Trip Wiring provides relay outputs to trip a shunt trip circuit breaker and to signal the common fault shutdowns. Contacts rated at 10 amps at 28 VDC or 120 VAC.
- Two Input/Five Output Module provides a generator set mounted panel with two inputs and five relay outputs.

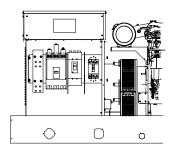
Windows® is a registered trademark of Microsoft Corporation.

Modbus® is a registered trademark of Schneider Electric

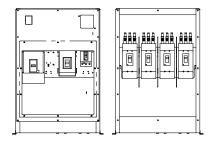
DISTRIBUTED BY:

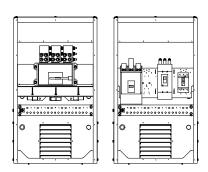

Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler® generator set distributor for availability.

© 2018 Kohler Co., All rights reserved.


^{*} Electronic governor and ECM are optional on KDI M and TM engines.

[†] Controller uses local analog input to obtain this information.


Line Circuit Breakers 15-3250 kW


Single Circuit Breaker Kit with Neutral Bus Bar 15-300 kW Model Shown

Multiple Circuit Breaker Kit with Neutral Bus Bar 180-300 kW Model Shown

Multiple Circuit Breaker Kits with Neutral Bus Bar 350-2250 kW Model Shown (also applies to some 300 kW models)

Circuit Breaker Kits with Neutral Bus Bar 800-2500 kW KD Model Shown

Standard Features

- The line circuit breaker interrupts the generator set output during a short circuit and protects the wiring when an overload occurs. Use the circuit breaker to manually disconnect the generator set from the load during generator set service.
- Circuit breaker kits are mounted to the generator set and are provided with load-side lugs and neutral bus bar.
- Kohler Co. offers a wide selection of molded-case line circuit breaker kits including single, dual, and multiple configurations for each generator set.
- Four types of line circuit breakers are available: (see page 2 for definitions and pages 3 and 4 for application details)
 - Magnetic trip
 - o Thermal magnetic trip
 - Electronic trip
 - o Electronic with ground fault (LSIG) trip
- In addition, line circuit breakers are offered with 80% and 100% ratings.
- Single line circuit breaker kits allow circuit protection of the entire electrical system load.
- Dual line circuit breaker kits allow circuit protection of selected priority loads from the remaining electrical system load.
- Multiple line circuit breaker kits with field connection barrier allow circuit protection for special applications (350-2500 kW models and selected 80-300 kW models).
- Up to four line circuit breakers can be used on 350-2500 kW models.
- Line circuit breakers comply with the following codes and standards unless otherwise stated.
 - O UL 489 Molded Case Circuit Breakers
 - UL 1077 Supplementary Protectors
 - UL 2200 Stationary Engine Generator Assemblies

Line Circuit Breaker Types

Magnetic Trip

The magnetic trip features an electromagnet in series with the load contacts and a moveable armature to activate the trip mechanism. When a sudden and excessive current such as a short circuit occurs, the electromagnet attracts the armature resulting in an instantaneous trip.

Thermal Magnetic Trip

Thermal magnetic trip contains a thermal portion with a bimetallic strip that reacts to the heat produced from the load current. Excessive current causes it to bend sufficiently to trip the mechanism. The trip delay is dependent on the duration and excess of the overload current. Elements are factory-calibrated. A combination of both thermal and magnetic features allows a delayed trip on an overload and an instantaneous trip on a short circuit condition.

Electronic Trip

These line circuit breakers use electronic controls and miniature current transformers to monitor electrical currents and trip when preset limits are exceeded.

LI breakers are a combination of adjustable trip functions including long-time ampere rating, long-time delay, and instantaneous pickup. LSI breakers have all of the LI breaker features plus short-time pickup, short-time delay, and defeatable instantaneous pickup. LSIG breakers have all of the LSI breaker features plus ground-fault pickup and delay.

NOTE: MG-frame does not have a long-time delay when selected with LI breakers.

Electronic with Ground Fault Trip

The ground fault trip feature is referred to as LSIG in this document. Models with LSIG compare current flow in phase and neutral lines, and trip when current unbalance exists.

Ground fault trip units are an integral part of the circuit breaker and are not available as field-installable kits. The ground fault pickup switch sets the current level at which the circuit breaker will trip after the ground fault delay. Ground fault pickup values are based on circuit breaker sensor plug only and not on the rating plug multiplier. Changing the rating plug multiplier has no effect on the ground fault pickup values.

80% Rated Circuit Breaker

Most molded-case circuit breakers are 80% rated devices. An 80% rated circuit breaker can only be applied at 80% of its rating for continuous loads as defined by NFPA 70. Circuit conductors used with 80% rated circuit breakers are required to be rated for 100% of the circuit breaker's rating.

The 80% rated circuit breakers are typically at a lower cost than the 100% rated circuit breaker but load growth is limited.

100% Rated Circuit Breaker

Applications where all UL and NEC restrictions are met can use 100% rated circuit breakers where 100% rated circuits can carry 100% of the circuit breaker and conductor current rating.

The 100% rated circuit breakers are typically at a higher cost than the 80% rated circuit breaker but have load growth possibilities.

When applying 100% rated circuit breakers, comply with the various restrictions including UL Standard 489 and NEC Section 210. If any of the 100% rated circuit breaker restrictions are not met, the circuit breaker becomes an 80% rated circuit breaker.

Line Circuit Breaker Options

☐ Alarm Switch The alarm switch indicates that the circuit breaker is in a tripped position caused by an overload, short circuit, ground fault, the operation of the shunt trip, an undervoltage trip, or the push-totrip pushbutton. The alarm resets when the circuit breaker is ☐ Auxiliary Contacts These switches send a signal indicating whether the main circuit breaker contacts are in the open or closed position. ☐ Breaker Separators (350-2500 kW) Provides adequate clearance between breaker circuits. ☐ Bus Bars Bus bar kits offer a convenient way to connect load leads to the generator set when a circuit breaker is not present. 15-300 kW. Bus bar kits are available on alternators with leads for connection to the generator set when circuit breakers are not 350-2500 kW. A bus bar kit is provided when no circuit breaker is ordered. Bus bars are also available in combination with circuit breakers or other bus bars on the opposite side of the junction box. On medium voltage (3.3 kV and above) units, a bus bar kit is standard (not applicable to KD models). ☐ Field Connection Barrier Provides installer wiring isolation from factory connections. ☐ Ground Fault Annunciation A relay contact for customer connection indicates a ground

fault condition and is part of a ground fault alarm.

This field-installable handle padlock attachment is available for manually operated circuit breakers. The attachment can accommodate three padlocks and will lock the circuit breaker in the OFF position only.

☐ Lockout Device (padlock attachment)

☐ Lugs

Various lug sizes are available to accommodate multiple cable sizes for connection to the neutral or bus bar.

☐ Overcurrent Trip Switch

The overcurrent trip switch indicates that the circuit breaker has tripped due to overload, ground fault, or short circuit and returns to the deenergized state when the circuit breaker is reset.

☐ Shunt Trip, 12 VDC or 24 VDC

A shunt trip option provides a solenoid within the circuit breaker case that, when momentarily energized from a remote source, activates the trip mechanism. This feature allows the circuit breaker to be tripped by customer-selected faults such as alternator overload or overspeed. The circuit breaker must be reset locally after being tripped. Tripping has priority over manual or motor operator closing.

☐ Shunt Trip Wiring

Connects the shunt trip to the generator set controller. (standard on KD models with the APM802 controller)

☐ Undervoltage Trip, 12 VDC or 24 VDC

The undervoltage trips the circuit breaker when the control voltage drops below the preset threshold of 35%-70% of the rated voltage.

15-300* kW Line Circuit Breaker Specifications

* Includes models 300REOZJ and 300REZXC. For other 300 kW models, see the 350-2250 kW section.

80% Rating Circuit Breaker

Alt Madel	Ampere		C. B. Frame Size	
Alt. Model	Range	Trip Type	Size	
	15- 150	Thermal magnetic		
4D/4E		Electronic LI	HD	
	60- 150	Electronic LSI		
		Electronic LSIG		
	00.450	Electronic LI Electronic LSI	ш	
	60- 150		HG	
		Electronic LSIG		
		Magnetic, UL 1077	_	
	30- 100	Magnetic, UL 1077 with 12 V shunt trip	E (480 V	
		Magnetic, UL 1077 with 24 V shunt trip	max.)	
	15- 150	Thermal magnetic		
		Electronic LI	LID	
	60- 150	Electronic LSI	HD	
		Electronic LSIG		
		Electronic LI		
	60- 150	Electronic LSI	HG	
		Electronic LSIG		
	30	Magnetic 9-325		
	50	Magnetic 84-546		
	100	Magnetic 180-1040	HJ	
	150	Magnetic 348- 1690		
	175-250	Thermal magnetic	- JD	
4P/4PX/		Electronic LI		
4Q/4QX	250	Electronic LSI		
		Electronic LSIG		
		Electronic LI		
	250	Electronic LSI	JG	
		Electronic LSIG		
	250	Magnetic only 684-2500	JJ	
	300-400	Thermal magnetic	LA	
		Magnetic 500-1000		
		Magnetic 750- 1600		
		Magnetic 1000-2000		
	400	Magnetic 1125-2250	LA	
	400	Magnetic 1250-2500	LA	
		Magnetic1500-3000		
		Magnetic 1750-3500		
		Magnetic 2000-4000		
		Electronic LI		
	400	Electronic LSI	LG	
		Electronic LSIG		
4500		Magnetic, UL 1077		
4RX 4S/4SX 4TX	30- 100	Magnetic, UL 1077 with 12 V shunt trip	E (480 V max.)	
41X 4V		Magnetic, UL 1077 with 24 V shunt trip		

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size		
	15- 150	Thermal magnetic			
		Electronic LI	1		
	60- 150	Electronic LSI	HD		
		Electronic LSIG	1		
		Electronic LI			
	60- 150	Electronic LSI	HG		
		Electronic LSIG			
	30	Magnetic 9-325			
	50	Magnetic 84-546	1		
	100	Magnetic 180-1040	HJ		
	150	Magnetic 348-1690			
	175-250	Thermal magnetic			
		Electronic LI]		
	250	Electronic LSI	JD		
		Electronic LSIG	1		
4RX		Electronic LI			
4S/4SX 4TX/4V	250	Electronic LSI	JG		
41X/4V 4UA		Electronic LSIG	1		
4M6226	250	Magnetic only 684-2500	JJ		
	300-400	Thermal magnetic	LA		
		Magnetic 500-1000			
		Magnetic 750-1600			
		Magnetic 1000-2000			
	100	Magnetic 1125-2250	_		
	400	Magnetic 1250-2500	LA		
		Magnetic1500-3000			
		Magnetic 1750-3500			
		Magnetic 2000-4000	1		
		Electronic LI			
	400-600	Electronic LSI	LG		
		Electronic LSIG			
	000	Electronic LSI	DO		
	800	Electronic LSIG	PG		
	800	Electronic LI	MG		
		Thermal magnetic			
	1000-1200	Electronic LSI	PG		
4UA		Electronic LSIG			
4M6226		Thermal Magnetic	<u> </u>		
	1200	Electronic LSI	PJ		
		Electronic LSIG			

15-300* kW Line Circuit Breaker Specifications

* Includes models 300REOZJ and 300REZXC. For other 300 kW models, see the 300-2250 kW section.

100% Rating Circuit Breaker

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size	
	15- 150	Thermal magnetic		
		Electronic LI		
4D/4E	60- 150	Electronic LSI	HD	
		Electronic LSIG		
		Electronic LI		
	60- 150	Electronic LSI	HG	
		Electronic LSIG		
	15- 150	Thermal magnetic		
		Electronic LI	HD	
	60- 150	Electronic LSI	110	
		Electronic LSIG		
		Electronic LI		
	60- 150	Electronic LSI	HG	
		Electronic LSIG		
4P/4PX	175-250	Thermal magnetic	JD	
4Q/4QX		Electronic LI		
	250	Electronic LSI	JD	
		Electronic LSIG		
		Electronic LI		
	250	Electronic LSI	JG	
		Electronic LSIG		
		Electronic LI		
	400	Electronic LSI	LG	
	45.450	Electronic LSIG		
	15- 150	Thermal magnetic	4	
		Electronic LI	HD	
	60- 150	Electronic LSI		
		Electronic LSIG		
		Electronic LI		
	60- 150	Electronic LSI	HG	
		Electronic LSIG		
4RX	175-250	Thermal magnetic		
4S/4SX 4TX		Electronic LI		
41A 4V	250	Electronic LSI	JD	
4UA		Electronic LSIG		
4M6226		Electronic LI		
	250	Electronic LSI	JG	
		Electronic LSIG		
		Electronic LI		
	400	Electronic LSI	LG	
	100	Electronic LSIG		
		Electronic LSI		
	600-800		PG	
		Electronic LSIG		
	1000-1200	Electronic LSI	PG	
4UA		Electronic LSIG		
4M6226	1200	Electronic LSI	PJ	
		Electronic LSIG		

100% Rating Electrically Operated Breakers

For use as paralleling breakers with the Decision-Maker® 6000 Controller/DPS System or APM603 controller.

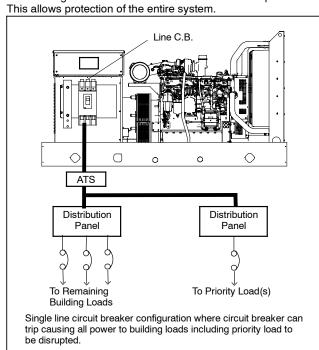
Generator-Mounted P-Frame, 24VDC Electrically Operated			
Alt. Model	Amps	Trip Unit	Frame
4RX	250	3.0 LI	PJ
4S/4SX	400	5.0 LSI	PJ
4TX	600 800	3.0 LI	PL
4V		5.0 LSI	PL
250	3.0 LI	PJ	
4UA	400 4UA 600	5.0 LSI	PJ
4M6226	800 1000	3.0 LI	PL
	1200	5.0 LSI	PL

All circuit breakers listed in this table include line side bus and load side lugs, 24VDC motor operators, 2 type C auxiliary contacts, and 1 type C SDE overcurrent switch contact. No second breakers are allowed in combination with these breakers.

Interrupting Ratings

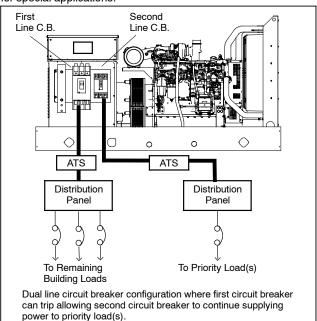
Circuit Breaker Frame Size	240 Volt, kA	480 Volt, kA	600 Volt, kA
HD	25	18	14
HG	65	35	18
HJ	100	65	25
JD	25	18	14
JG	65	35	18
JJ	100	65	25
LA	42	30	22
LG	0-	0.5	40
MG	65	35	18
PG	65	35	18
PJ	100	65	25
PL	125	100	25

Circuit Breaker Lugs Per Phase (AI/Cu)


ng
U
ıls
U
U
;

15-300* kW Line Circuit Breaker Applications

* Includes models 300REOZJ and 300REZXC. For other 300 kW models, see the 300-2250 kW section.


Single Circuit Breaker Installations

A generator set with a single circuit breaker installed typically feeds a single transfer switch and then a distribution panel.

Multiple Circuit Breaker Installations

A generator set with dual circuit breakers installed is used to separate critical loads. Typically, one circuit breaker will feed a main transfer switch with noncritical loads and the other circuit breaker will feed a second transfer switch that feeds critical or priority loads. Multiple circuit breakers allow circuit protection for special applications.

Circuit Breaker Combinations

Alternator Model	First C. B. Frame	Second C. B. Frame	Third C. B. Frame	Trip Type
	Н	_	_	
ALL	J	_	_	
except 4D/4E	LA	_	_	All
	LG	_	_	
4D/4E	Н	_	_	Standard or LSIG
4D/4E	Н	Н	_	No LSIG
	Н		_	
4P/4PX	J	H or J	_	No LSIG
4Q/4QX	LA		_	INO LOIG
	LG	H, J or LG	_	
	М	_	_	All
	Р	_	_	All
.51/	H or J	H or J	_	
4RX 4S/4SX 4TX	LA	H, J, or LA	_	
4V	LG			No LSIG
	M	H, J, LA, or LG	_	
	Р	0, 20		
	H or J	H or J	H or J	
	M or P	_	_	All
	H or J	H or J	_	_
	LA	H, J, or LA	_	All
	LG	H, J, LA, or LG	_	
	M or P	H, J, LA, or LG	_	
	Р	Р	_	
	H or J	H or J	H or J	
4UA		H or J	H or J	
4M6226	LA	LA	H, J, or LA	
		H or J	H or J	
	LG	LA	H, J, or LA	No LSIG
		LG	H, J, LA, or LG	
		H or J	H or J]
	M or P	LA	H, J, or LA	
		LG	H, J, or LG	

300-2250* kW Line Circuit Breaker Specifications

* Includes models 300REZXB and 300RZXB. For models 300REOZJ and 300REZXC, see the 15-300 kW section. For KD model generator sets, see pages 8 and 9.

80% Rating Circuit Breaker

Alt Medel	Amnava Banga	Trin Type	C. B. Frame
Alt. Model	Ampere Range 15- 150	Trip Type	Size HD
	15- 150	Thermal Magnetic	пр
	00.450	Electronic LI Electronic LSI	
	60- 150	Electronic LSIG	HD
	175-250		
	175-250	Thermal Magnetic	
	050	Electronic LI Electronic LSI	JD
	250	Electronic LSIG	
		Electronic LSIG	
	00.450	Electronic LSI	
	60- 150	Electronic LSIG	HG
		Electronic LSIG	
	050		10
	250	Electronic LSI	JG
		Electronic LSIG	
	30	9-325 A. Mag. Trip	
	50	84-546 A. Mag. Trip	HJ
	100	180- 1040 A. Mag. Trip	
	150	348-1690 A. Mag. Trip	
	250	684- 2500 A. Mag. Trip	JJ
4M	300-400	Thermal Magnetic	
5M 7M		500- 1000 A. Mag. Trip	
7 101		750- 1600 A. Mag. Trip	
		1000-2000 A. Mag. Trip	
	400	1125- 2250 A. Mag. Trip	LA
		1250-2500 A. Mag. Trip	
		1500-3000 A. Mag. Trip	
		1750-3500 A. Mag. Trip	
		2000-4000 A. Mag. Trip	
		Electronic LI	
	400-600	Electronic LSI	LG
		Electronic LSIG	
	800	Electronic LI	MG
	1000-1200	Thermal Magnetic	
	800-1200	Electronic LSI	PG
	000 1200	Electronic LSIG	
		Thermal Magnetic	
	1200	Electronic LSI	PJ
		Electronic LSIG	
		Thermal Magnetic	
	1600-2500	Electronic LSI	RJ
		Electronic LSIG	

100% Rating Circuit Breaker

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size	
	15- 150	Thermal Magnetic		
		Electronic LI		
	60- 150	Electronic LSI	HD	
		Electronic LSIG		
	175- 250	Thermal Magnetic		
		Electronic LI	I.D.	
	250	Electronic LSI	JD	
		Electronic LSIG		
		Electronic LI		
	60- 150	Electronic LSI	HG	
		Electronic LSIG		
4M		Electronic LI		
5M	250	Electronic LSI	JG	
7M		Electronic LSIG		
		Electronic LI		
	400	Electronic LSI	LG	
		Electronic LSIG	1	
	000 1000	Electronic LSI	DO.	
	600-1200	Electronic LSIG	PG	
	1000	Electronic LSI	P.J	
	1200	Electronic LSIG	PJ	
	1000 0500	Electronic LSI	Б	
	1600-2500	Electronic LSIG	RJ	
	1000 0000	Electronic LSI	NIVA/	
	1600-3000	Electronic LSIG	NW	

100% Rating Electrically Operated Breakers

For use as paralleling breakers.*

Alt. Model	Amps	Trip Unit	Frame
4M 5M 7M		3.0 LI	PJ
	250, 400, 600,	5.0 LSI	PJ
	800, 1000, 1200	3.0 LI	PL
		5.0 LSI	PL
	1600, 2000,	Electronic LSI	NW
	2500, 3000	Electronic LSIG	NW

P-frame breakers can be used with the Decision-Maker® 6000 Controller/DPS System or APM603 controller.
 NW breakers are for use with the APM603 only.

All circuit breakers listed in this table include line side bus and load side lugs, 24VDC motor operators, and 1 type C SDE overcurrent switch contact. P-frame breakers include 2 type C auxiliary contacts. NW breakers include 4 auxiliary contacts.

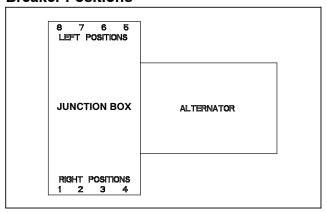
No second breakers are allowed in combination with these breakers.

Load Bus Rating

	Gen. Set kW	Alt. Model	Rating, Amperes	Туре
;	350- 2250 kW	4M/ 5M/ 7M	3000	Load Bus

300-2250* kW Line Circuit Breaker Specifications

* Includes models 300REZXB and 300RZXB. For models 300REOZJ and 300REZXC, see the 15-300 kW section. For KD model generator sets, see pages 8 and 9.


Interrupting Ratings

<u> </u>			
Circuit Breaker Frame Size	240 Volt, kA	480 Volt, kA	600 Volt, kA
HD	25	18	14
HG	65	35	18
HJ	100	65	25
JD	25	18	14
JG	65	35	18
JJ	100	65	25
LA	42	30	22
LG			
MG	65	35	18
NW	100	100	85
PG	65	35	18
PJ	100	65	25
PL	125	65	25
RJ	100	65	25

Circuit Breaker Lugs Per Phase (Al/Cu)

2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1				
Frame Size	Ampere Range	Wire Range		
Н	15- 150	One #14 to 3/0		
	175	One 1/0 to 4/0		
J	200-250	One 3/0 to 350 kcmil		
LA	300-400	One #1 to 600 kcmil or Two #1 to 250 kcmil		
LG	400-600	Two 2/0 to 500 kcmil		
М	800	Three 3/0 to 500 kcmil		
Б	600-800	Three 3/0 to 500 kcmil		
P	1000-1200	Four 3/0 to 500 kcmil		
RJ	1600-2500	(8) 1/0 to 750 kcmil or (16) 1/0 to 300 kcmil		
NW	1600-3000	(10) 1/0 to 750 kcmil or (20) 1/0 to 300 kcmil		

Breaker Positions

 ${\bf NOTE}:$ Breaker and load bus phasing on right positions is A-B-C and on left positions is C-B-A.

NOTE: H, HG, J, JG, and LG-frames when selected with LSIG trip require two mounting spaces (one space for the breaker and one space for the LSIG neutral). These combinations are not reflected in the Multiple Circuit Breaker Combinations table on this page.

Multiple Circuit Breaker Combinations

iditiple offour	Positions				
Alternator Model	1 or 5	2 or 6	3 or 7	4 or 8	
Altornator model	H/J				
	H/J	H/J			
	H/J	H/J	H/J		
	H/J	H/J	H/J	H/J	
	LA	11/0	11/0	11/0	
	LA	H/J			
	LA	LA			
	LA	H/J	H/J		
	LA	LA	H/J		
	LA	LA	LA		
	LA		1	11/1	
		H/J	H/J	H/J	
	LA	LA	H/J	H/J	
	LA	LA	LA	H/J	
	LA	LA	LA	LA	
	LG				
	LG	H/J			
	LG	LA			
	LG	LG			
	LG	H/J	H/J		
	LG	LA	H/J		
	LG	LA	LA		
	LG	LG	H/J		
484/	LG	LG	LA		
4M/ 5M/	LG	LG	LG		
7M	LG	H/J	H/J	H/J	
	LG	LA	H/J	H/J	
	LG	LA	LA	H/J	
	LG	LA	LA	LA	
	LG	LG	H/J	H/J	
	LG	LG	LA	H/J	
	LG	LG	LA	LA	
	LG	LG	LG	H/J	
	LG	LG	LG	LA	
	LG	LG	LG	LG †	
	M	/P			
	M	/P	H/J		
	M	/P	LA		
	M	/P	LG		
	M	/P	M/P ‡		
	M		H/J	H/J	
		/P	LA	H/J	
		/P	LA	LA	
		/P	LG	H/J	
		/P	LG	LA	
		/P	LG	LG †	
	101,				
	R § NW §				
			US KIT §		
	L	LOVD D	001/11/2		

- [†] Frame size LG is not available in position 4 with 1219 mm (48 in.) junction box.
- ‡ Frame sizes M/P are not available in position 3 or 4 with 1219 mm (48 in.) junction box.
- § R breakers, NW breakers, and the load bus kit occupy all four positions on a side.

800-2500 kW KD Model Line Circuit Breaker Specifications

80% Rating Circuit Breaker

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size		
	15- 150	Thermal Magnetic			
		Electronic LI			
	60-150	Electronic LSI	HD		
		Electronic LSIG			
		Electronic LI			
	60-150	Electronic LSI	HG		
		Electronic LSIG			
	30	9- 325 A. Mag. Trip			
	50	84-546 A. Mag. Trip	1		
	100	180-1040 A. Mag. Trip	HJ		
	150	348-1690 A. Mag. Trip			
	175-250	Thermal Magnetic			
		Electronic LI]		
	250	Electronic LSI	JD		
		Electronic LSIG			
	250	Electronic LI			
1211		Electronic LSI	JG		
KH		Electronic LSIG			
	250	684-2500 A. Mag. Trip	JJ		
	400	2000-4800 A Mag. Trip			
	600	3000-7200 A Mag. Trip			
	400-600	Electronic LI	LG		
		Electronic LSI			
		Electronic LSIG			
	800	Electronic LI	MG		
	1000-1200	Thermal Magnetic			
	000 1000	Electronic LSI	PG		
	800-1200	Electronic LSIG	1		
		Thermal Magnetic			
	1200	Electronic LSI	PJ		
		Electronic LSIG			
		Thermal Magnetic			
	1600-2500	Electronic LSI	RJ		
		Electronic LSIG			

100% Rating Circuit Breaker

Alt. Model	Ampere Range	Trip Type	C. B. Frame Size	
	15-150	Thermal Magnetic		
		Electronic LI	LID	
	60-150	Electronic LSI	HD	
		Electronic LSIG		
		Electronic LI		
	60-150	Electronic LSI	HG	
		Electronic LSIG		
	175-250	Thermal Magnetic		
	250	Electronic LI	ın	
		Electronic LSI	JD	
		Electronic LSIG		
	250	Electronic LI		
KH		Electronic LSI	JG	
		Electronic LSIG		
	400	Electronic LI		
		Electronic LSI	LG	
		Electronic LSIG		
	600- 1200	Electronic LSI	PG	
	600-1200	Electronic LSIG	PG	
	1200	Electronic LSI	PJ	
	1200	Electronic LSIG	PJ	
	1600-2500	Electronic LSI	D.I	
		Electronic LSIG	RJ	
	1600-3000	Electronic LSI	NW	
	1000-0000	Electronic LSIG	INVV	

100% Rating Electrically Operated Breakers

For use as paralleling breakers with the APM603 controller.

Alt. Model	Amps	Trip Unit	Frame
		3.0 LI	PJ
	250, 400, 600, 800, 1000, 1200 1600, 2000, 2500, 3000	5.0 LSI	PJ
1411		3.0 LI	PL
KH		5.0 LSI	PL
		Electronic LSI	NW
		Electronic LSIG	NW

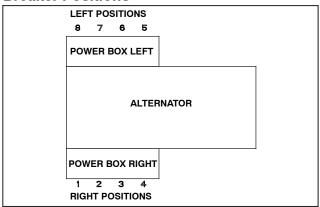
All circuit breakers listed in this table include line side bus and load side lugs, 24VDC motor operators, and 1 type C SDE overcurrent switch contact. P-frame breakers include 2 type C auxiliary contacts. NW breakers include 4 auxiliary contacts.

No second breakers are allowed in combination with these breakers.

Load Bus Rating

Gen. Set Model	Alt. Model	Rating, Amperes	Туре
KD800- KD2500	KH	2000 3000 4000 4500	Load Bus

800-2500 kW KD Model Line Circuit Breaker Specifications


Interrupting Ratings

Circuit Breaker Frame Size	240 Volt, kA	480 Volt, kA	600 Volt, kA	
HD	25	18	14	
HG	65	35	18	
HJ	100	65	25	
JD	25	18	14	
JG	65	35	18	
JJ	100	65	25	
LG				
MG	65	35	18	
PG				
PJ	100	0.5		
RJ	100	65	25	
NW	100	100	85	

Circuit Breaker Lugs Per Phase (Al/Cu)

		<u> </u>
Frame Size	Ampere Range	Wire Range
Н	15- 150	One #14 to 3/0
	175	One 1/0 to 4/0
J	200-250	One 3/0 to 350 kcmil
LG	400-600	Two 2/0 to 500 kcmil
М	800	Three 3/0 to 500 kcmil
1	600-800	Three 3/0 to 500 kcmil
Р	1000-1200	Four 3/0 to 500 kcmil
R	1600-2500	(8) 1/0 to 750 kcmil or (16) 1/0 to 300 kcmil
NW	1600-3000	(10) 1/0 to 750 kemil or (20) 1/0 to 300 kemil
Mechanical L	oad Lugs Included wi	th H, J, and LG LSIG Neutrals
Н	60-150	One #14 to 3/0 AL/CU
J	250	One 3/0 to 350 kcmil AL/CU
LG	400-600	Two 4/0 to 500 kcmil AL/CU

Breaker Positions

NOTE: Breaker and load bus phasing on right positions is A- B- C and on left positions is C- B- A.

NOTE: H, J, and LG-frames when selected with LSIG trip require two mounting spaces (one space for the breaker and one space for the LSIG neutral). These combinations are not reflected in the Multiple Circuit Breaker Combinations table on this page.

Multiple Circuit Breaker Combinations

	Positions			
Alternator Model	1 or 5	2 or 6	3 or 7	4 or 8
	H/J			
	H/J	H/J		
	H/J	H/J	H/J	
	H/J	H/J	H/J	H/J
	LG			
	LG	H/J		
	LG	LG		
	LG	H/J	H/J	
	LG	LG	H/J	
	LG	LG	LG	
	LG	H/J	H/J	H/J
1211	LG	LG	H/J	H/J
KH	LG	LG	LG	H/J
	LG	LG	LG	LG
	M/P *			
	M/P *		H/J	
	M/P *		LG	
	M/P *		M/P *	
	M/I	P*	H/J	H/J
	M/I	P*	LG	H/J
	M/P *		LG	LG
	R §			
	NW §			
		LOAD B	US KIT §	

^{*} M and P breakers occupy two positions each.

[§] R breakers, NW breakers, and the load bus kit occupy all four positions on a side.

Enclosed Circuit Breakers

The following loose circuit breakers are available in NEMA 1 or NEMA 3R enclosures for remote mounting.

80% Rating Circuit Breakers

Ampere Range	Тгір Туре	C. B. Frame Size	
15- 150	Thermal Magnetic	HD	
	Electronic LI		
60- 150	Electronic LSI	HD	
175-250	Thermal Magnetic		
050	Electronic LI	JD	
250	Electronic LSI		
00.450	Electronic LI	110	
60- 150	Electronic LSI	HG	
050	Electronic LI	10	
250	Electronic LSI	JG	
30	9-325 A. Mag. Trip	HJ	
50	84- 546 A. Mag. Trip		
100	180-1040 A. Mag. Trip		
150	348-1690 A. Mag. Trip		
250	250 684- 2500 A. Mag. Trip		
300-400	Thermal Magnetic		
	500-1000 A. Mag. Trip		
	750-1600 A. Mag. Trip		
	1000-2000 A. Mag. Trip		
400	1125-2250 A. Mag. Trip	LA	
400	1250-2500 A. Mag. Trip		
	1500-3000 A. Mag. Trip		
	1750-3500 A. Mag. Trip		
	2000- 4000 A. Mag. Trip		
400 000	Electronic LI	10	
400- 600	Electronic LSI	LG	
800 Electronic LI		MG	
1000-1200	Thermal Magnetic	PG	
800-1200	Electronic LSI	PG	
1200	Thermal Magnetic		
1200	Electronic LSI	PJ	

100% Rating Circuit Breakers

Ampere Range	Trip Type	C. B. Frame Size
15- 150	Thermal Magnetic	Oize
	Electronic LI	HD
60- 150	Electronic LSI	
175-250	Thermal Magnetic	
050	Electronic LI	
250	Electronic LSI	
00.450	Electronic LI	110
60- 150	Electronic LSI	HG
050	Electronic LI	10
250	Electronic LSI	JG
400	Electronic LI	
400	Electronic LSI	LG
600- 800	Electronic LSI	PG
000-800	Electronic LSIG	FG

Circuit Breaker Lugs Per Phase (Al/Cu)

Frame Size	Ampere Range	Wire Range
Н	15- 150	One #14 to 3/0
	175	One #4 to 4/0
J	200-250	One 3/0 to 350 kcmil
	000	One #1 to 600 kcmil
LA	300	Two #1 to 250 kcmil
	250	One #2 to 500 kcmil
LG	400-600	Two 2/0 to 500 kcmil
M	800	Three 3/0 to 500 kcmil
	250-800	Three 3/0 to 500 kcmil
Р	1000-1200	Four 3/0 to 500 kcmil

Accessories

Accessory	Breaker Frame
Auxiliary Contacts	H, J, LA, LG, M, P
Shunt Trip 12VDC	H, J, LA, LG, M, P
Shunt Trip 24VDC	H, J, LA, LG, M, P
Undervoltage Trip 12VDC	H, J, LA, LG, M, P
Undervoltage Trip 24VDC	H, J, LA, LG, M, P
Alarm Switch	H, J, LA, LG, M, P
Overcurrent Switch	H, J, LA, LG, M, P

Note: LA frame accepts a maximum combination of (2) internal accessories (not including padlock attachment)

Enclosed Circuit Breakers

Enclosure Specifications

	Dimensions, L x W x H, mm (in.)				
Frame Size	NEMA 1	NEMA 3R			
H, J	365 x 156 x 797 (14.4 x 6.2 x 31.4)	374 x 156* x 820 (14.8 x 6.2* x 32.3)			
LA	388 x 165* x 1130 (15.3 x 6.5* x 44.5)	391 x 200* x 1118 (15.4 X 7.9* X 44.0)			
LG †	519 x 293 x 1515 (20.4 x 11.5 x 59.6)	519 x 293 x 1515 (20.4 x 11.5 x 59.6)			
M, P	533 x 248 x 1324 (21.0 x 9.58 x 52.1)	533 x 309 x 1324 (21.0 x 12.2 x 52.1)			

^{*} Width does not include circuit breaker operating handle.

Solid Neutral Assemblies and Ground Kits

Frame Size	Neutral or Ground	Maximum Ampere Rating	Terminals	Conductors per Terminal	Wire Size	Туре
			_		#14 to 1/0	CU
	Neutral	100	2	1	#12 to 1/0	AL
H, J	Neutral	250	2	1 or 2	#1 to 600 #1 to 250	AL or CU
			2	1	#4 to 300	AL or CU
	Ground	250	2	1	#6 to 300	AL or CU
		400	2	1 or 2	#1 to 600	AL or CU
	Neutral		2	1 or 2	#1 to 250	AL or CU
LA	0 1		2	1	#10 to 2/0	CU
Groun	Ground	_	2	1	#6 to 2/0	AL
	Neutral	200-1000	2	3	3/0 to 500	AL or CU
LG	Ground	_	4	1	#6 to 250	AL or CU
	Neutral	1200	8 (4 in, 4 out)	1	3/0 to 500	AL or CU
M, P				2	#6 to 350	AL or CU
	Ground	_	4	1	#6 to 300	AL or CU

[†] Enclosures accept 80% rated L-frame circuit breakers 600A max OR 100% rated L-frame circuit breakers 400A max.

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Enclosed Circuit Breakers and Fused Disconnect Switches

The following loose circuit breakers and fused disconnect switches are available in NEMA 1 enclosures for remote mounting.

100% Rating 3P Circuit Breakers, 2500-3250 kW

2300-3230 KVV							
Amps	Trip Type	Volts	Hz	kW	Approvals		
3000		600	60	2500	UL891		
4000		780	60	2500	UL891		
4000		600	60	2800/ 3000/ 3250	UL891		
5000	Electronic LI	380	50	2500/ 2800/ 3250	IEC		
5000		480	60	2800/ 3000/ 3250	IEC		
3000		600	60	2500	UL891		
4000		480	60	2500	UL891		
4000	Electronic	600	60	2800/ 3000/ 3250	UL891		
5000	LSIG	380	50	2500/ 2800/ 3250	IEC		
5000		480	60	2800/ 3000/ 3250	IEC		

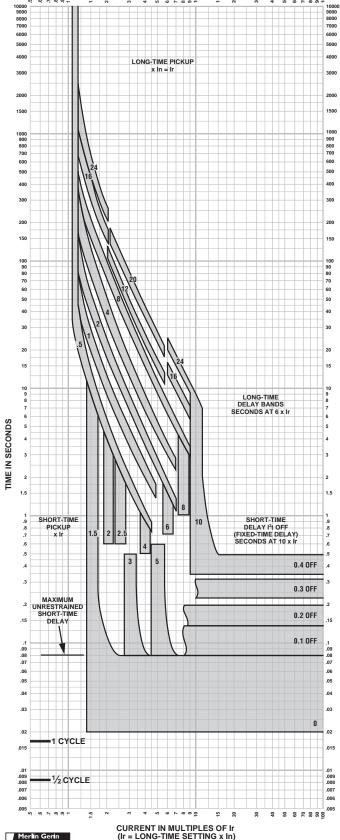
NEMA 1 Enclosure Specifications, Breakers

	Dimensions, L x W x H, mm (in.)				
Size	mm	in.			
3000 A	914.4 x 914.4 x 2324	36 x 36 x 91.5			
4000 A	1219 x 1067 x 2324	48 x 42 x 91.5			
5000 A	1219 x 1219 x 2324	48 x 48 x 91.5			

Fused Disconnect Switches 50/60 Hz, HVL-CC Switch, UL and IEC

Amps	Trip Type	Poles	Accessories
		3P	None
200			3 Auxiliary Contacts
400	Fuse		3 Auxiliary Contacts and Blown Fuse Indicator
600	600		3 Auxiliary Contacts, Blown Fuse Indicator, and Protective Relay

NEMA 1 Enclosure Specifications, Fused Disconnect Switches


	Dimensions, L x W x H, mm (in.)					
Size	mm	in.				
13.8 kV	946 x 749 x 2591 *	37.25 x 29.5 x 102				
4160 V 946 x 883 x 2591 * 37.25 x 34.75 x 102						
* Height	* Height includes pull box.					

DISTRIBUTED BY:

Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler® generator set distributor for availability.

© 2007 Kohler Co. All rights reserved.

CURRENT IN MULTIPLES OF Ir (Ir = LONG-TIME SETTING x In)

MICROLOGIC® 5.0/6.0 A/P/H TRIP UNIT CHARACTERISTIC TRIP CURVE NO. 613-4

Long-time Pickup and Delay Short-time Pickup and I²t OFF Delay

The time-current curve information is to be used for application and coordination purposes only.

Curves apply from -30°C to +60°C ambient temperature.

Notes:

- 1. There is a thermal-imaging effect that can act to shorten the long-time delay. The thermalimaging effect comes into play if a current above the long-time delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in a shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately 20 minutes is required between overloads to completely reset thermal-imaging.
- The end of the curve is determined by the interrupting rating of the circuit breaker.
- With zone-selective interlocking on, short-time delay utilized and no restraining signal, the maximum unrestrained short-time delay time band applies regardless of the setting.
- Total clearing times shown include the response times of the trip unit, the circuit breaker opening, and the extinction of the current.
- For a withstand circuit breaker, instantaneous can be turned OFF. See 613-7 for instantaneous trip curve. See 613-10 for instantaneous override values.
- 6. Overload indicator illuminates at 100%.

POWERPACT® P- and R-Frame Molded Case Circuit Breakers (Standard or 100% rated up to 2500 A)

The most compact and innovative molded case circuit breakers

POWERPACT Molded Case Circuit Breakers lead the industry with proven, reliable protection and innovative design. Providing unparalleled performance and control, this generation of P- and R-frame circuit breakers features exclusive MICROLOGIC® Trip Units, which allow for a range of sophisticated applications for metering and monitoring. In addition, units can be interchanged to allow for maximum flexibility and are field-installable for easy upgrades as needed.

The compact P- and R-frame circuit breakers permit smaller footprint and higher density installations using I-LINE® Panelboards and Switchboards. These circuit breakers are available in 100% rated construction up to 2500 A to meet a broad range of commercial and industrial application needs.

Full-Featured Performance

- P-frame 1200 A available in both standard and 100% ratings with sensor sizes 250–1200 A. Interrupting ratings (AIR) G-35kAIR, J-65kAIR and L-100kAIR at 480 VAC
- R-frame 2500 A available in both standard and 100% ratings with sensor sizes 600–2500 A. Interrupting ratings (AIR) G-35kAIR, J-65kAIR and L-100kAIR at 480 VAC
- Compact breaker size allows for smaller footprint installations using I-LINE Panelboards and Switchboards. 9" width on P-frame designs and 15" width on R-frame designs provide increased density installations
- Most field-installable accessories are common to all frame sizes for easier stocking and installation
- Selection of four interchangeable MICROLOGIC Trip Units with POWERLOGIC® power metering and monitoring capabilities available in advanced trip units
- Compatible with POWERLOGIC® systems and high amperage power circuit breakers
- Built-in MODBUS® protocol provides an open communications platform and eliminates the need to purchase additional, proprietary network solutions
- Connection options include bus, cable or I-Line for installation flexibility
- Additional options are available for 5-cycle closing, stored energy mechanisms and draw-out mounting of 1200 A breakers

P-Frame 1200 A

R-Frame

POWERPACT® P- and R-Frame Molded Case Circuit Breakers (Standard or 100% rated up to 2500 A)

Onboard Intelligence

For "smarter breakers," a range of MICROLOGIC® Trip Units provides advanced functionality, such as a communications interface, and power metering and monitoring capabilities. With the appropriate MICROLOGIC Trip Unit, you can communicate with breakers, gather power information, monitor events and remotely control breakers based on predetermined conditions, leading to substantial savings in electrical system operating costs.

These interchangeable, microprocessor-controlled, plug-in devices provide the next generation of protection, measurement and control functions, delivering not only greater electrical system safety but also improved system integration and coordination.

MICROLOGIC® Trip Units

Choose the Model that Meets Your Needs

MICROLOGIC 3.0 and 5.0

 Basic circuit protection including long-time, instantaneous and optional short-time adjustments

MICROLOGIC 3.0A, 5.0A and 6.0A

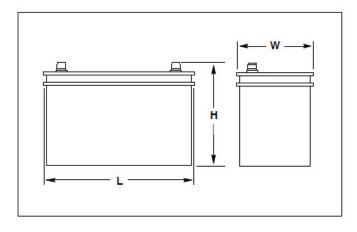
- Long-time, instantaneous and optional short-time adjustments
- Integrated ammeter and phase loading bar graph
- LED trip indicator
- Zone selective interlocking with downstream and upstream breakers
- Optional ground-fault protection
- Optional MODBUS® communications interface

MICROLOGIC 5.0P and 6.0P

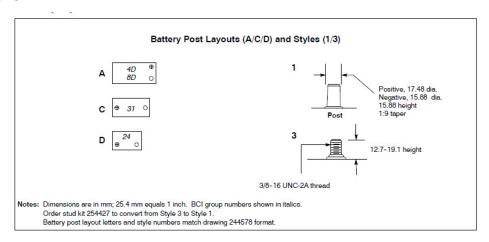
- Long-time, instantaneous and optional short-time adjustments
- Advanced relay protection (current imbalance, under/over voltage, etc.)
- Inverse Definite Minimum Time Lag (IdmtL) long-time delay curve shaping for improved coordination
- Basic power metering and monitoring functions
- Standard MODBUS communications interface compatibility with POWERLOGIC® installations
- Standard GF alarm on 5.0P.
 6.0P has equipment ground-fault tripping protection

MICROLOGIC 5.0H and 6.0H

- All 5.0P and 6.0P functions
- Enhanced POWERLOGIC power metering and monitoring capabilities
- Basic power quality (harmonic) measurement
- Waveform capture


Contact your Square D sales representative for additional information. Or, visit www.SquareD.com.

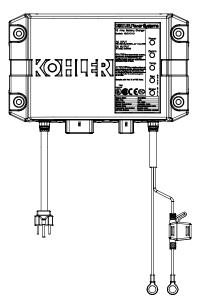
Typical Overall Dimensions



Standard Features

- Kohler Co. selects batteries to meet the engine manufacturer's specifications and to comply with NFPA requirements for engine-cranking cycles.
- Heavy-duty starting batteries are the most cost-effective means of engine cranking and provide excellent reliability in generator set applications.
- Tough polypropylene cases protect against life-shortening vibration and impact damage.
- Batteries are rated according to SAE standard J-537.
- All batteries are 12-volts. Kits that contain two or four batteries are availabe for 24-volt systems and/or systems with redundant starters.
- Wet- and dry-charged batteries have lead-calcium or leadantimony plates and use sulferic acide electrolyte. Removable cell covers allow checking of electrolyte specific gravity.
- Absorbant glass mat (AGM) batteries are sealed and maintenance free.
- Batteries are for applications below and above 0 ° C (32 ° F).

Charge Type*	Battery Part Number	Battery Qty. per Size	BCI Group Size	Battery SAE Dimension, mm (in.)		Cold Cranking Amps at 18°C (0°F) Min.	Reserve Capacity Minutes at 27° (80°F) Min.	Battery Post Layout and Style	
				L	W	Н	(O F) WIIII.	IVIII I.	
Wet	324586	2	31	330.2 (13.0)	173.0 (6.8)	239.8 (9.4)	950	185	C/3


Battery Specifications

Industrial Generator Set Accessories

12/24 Volt, 10 Amp Automatic Multi-Stage Battery Charger

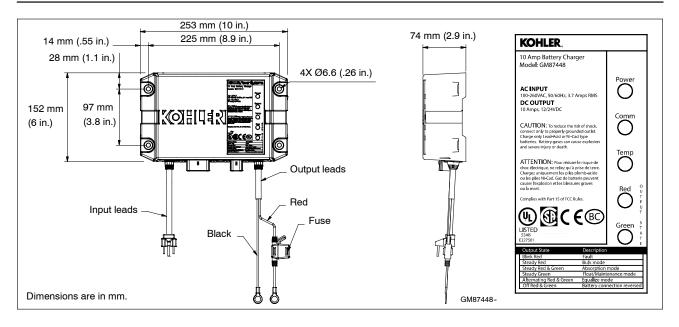
The battery charger is a fully-automatic, high efficiency battery charger that charges batteries rapidly and safely. The battery charger is designed for an industrial environment.

The battery charger is designed for operation with an engine cranking battery.

The battery charger is universal voltage input capable, comes with a standard 120 V/60 Hz AC plug, and charges 12 VDC or 24 VDC battery systems.

Five LED lights indicate power, communication status, temperature compensation status, charge curve, and charger status.

With the optional battery temperature sensor connected, the battery charger can adjust output voltages for optimal charging.


Standard Features

- 12 or 24 VDC output
 - Automatic voltage detection
- · Automatic multi-stage charging modes
 - o Recovery charge
 - o Bulk charge
 - o Absorption charge
 - Float charge
 - o Equalize charge
- Charges the following type batteries:
 - Flooded lead acid (FLA)
 - o AGM
 - o Gel cell
 - o High performance AGM
 - Nickel-cadmium (NiCad)
- 5 LED status indicators
- Durable potted assembly for waterproofing and vibration resistance
- Reverse-polarity protection
- Short-circuit protection
- · Electronically limited output current
- Optional temperature compensation (FLA only)
- User adjustable parameters to support optimal manufacturer recommended charge curve.
- Code compliance:
 - o UL 1236 Listed
 - NFPA 110, Level 1 compatible (when used with Kohler controller and connected to engine harness)
 - o CSA C22.2 No. 107.2-01
 - o FCC Title 47, Part 15 Class A
 - CE
 - o IBC 2015
 - o OSHPD

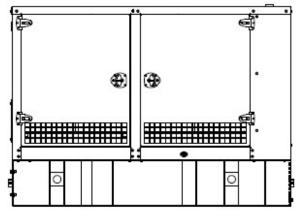
DC Out	put	AC Input			Shipping \	Veight
Volts (Nominal)	Amps	Volts (Nominal)	Amps	Overall Dimensions W x D x H	kgs	lbs
12/24	10	100-260	3.7	253 mm x 152 mm x 74 mm (10.0 in x 6.0 in x 2.9 in)	3.6	7.9

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

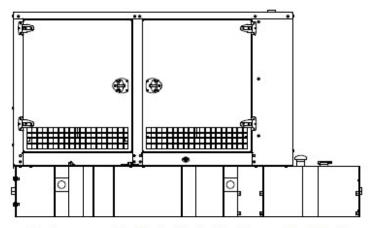
Specifications

AC Input	100-260 VAC
Frequency Input	50/60 Hz
DC Output	10 Amps @ 12 VDC or 10 Amps @ 24 VDC (On battery voltage regulation ±1%; current is electronically limited
Fuse Protection	15 amps ATC
Battery Types	Flooded Lead Acid (FLA)
	AGM
	Gel Cell
	High Performance AGM
	Nickel-Cadmium (NiCad)
Monitoring	
LED Indications	Power
	Communication
	Temperature compensation
	Output charger curve and charger status:
	○ Red
	o Green
Environmental	
Operating	-20° to 70°C (-4° to 158° F)
Storage	-40° to 85°C (-40° to 185° F)
Relative Humidity	5 to 95% (non-condensing)
Salt Spray Testing	ASTM B117
Corrosion Resistant	From battery gases

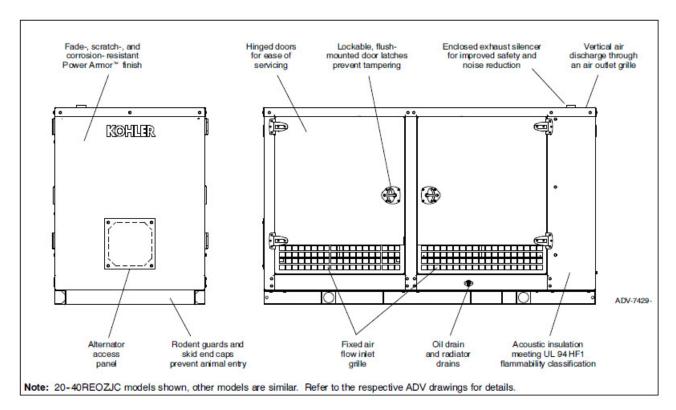
Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler® generator distributor for availability.


Enclosure			
Environmental Resistant	From rain, snow, dust, and dripping water		
Battery Connections			
Lead Length	1.8 m (6 ft.) red and black leads		
Battery Connections	9.5 mm (3/8 in.) ring terminals		
AC Power Connections			
Lead Length	1.8 m (6 ft.)		
Storage	Standard US style 3-prong AC plug		
Available Options			
Temperature compensation			

DISTRIBUTED BY:		

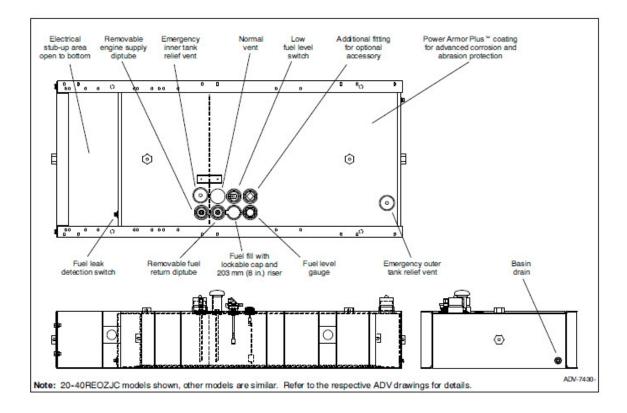

© 2017, 2019 by Kohler Co. All rights reserved.

Enclosure with Standard Subbase Fuel Tank


Enclosure with State Code Subbase Fuel Tank

Sound Enclosure Standard Features

- Internal-mounted critical silencer and flexible exhaust connector.
- Lift base-mounted or tank mounted steel construction with hinged doors.
- Fade-, scratch-, and corrosion-resistant Kohler® Power Armor automotive-grade textured finish.
- Power Armor surpasses 3,000-hour salt spray corrosion tests per ASTM B- 1117
- Enclosure has four access doors which allow for easy maintenance.
- · Lockable, flush-mounted door latches.
- Vertical air inlet and outlet discharge to redirect air and reduce noise.
- Acoustic insulation that meets UL 94 HF1 flammability classification and repels moisture adsorption.
- Sound-attenuated that uses up to 51 mm (2 in.) of acoustic insulation.
- Steel sound enclosure is designed to 150 mph (241 kph) wind load rating.

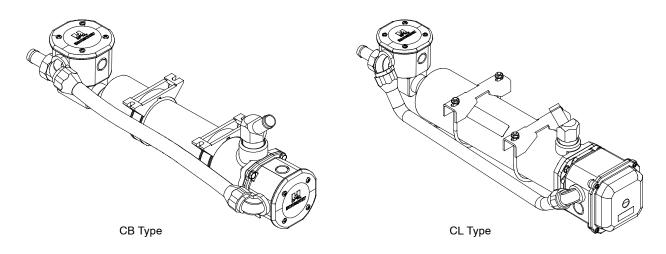

Subbase Fuel Tank Features

- The fuel tank has a Power Armor Plus textured epoxy-based rubberized coating.
- The above-ground rectangular secondary containment tank mounts directly to the generator set, below the generator set skid (subbase).
- Both the inner and outer tanks have emergency relief vents.
- Flexible fuel lines are provided with subbase fuel tank selection.
- The secondary containment generator set base tank meets UL 142 tank requirements. The inner (primary) tank is sealed inside the outer (secondary) tank. The outer tank contains the fuel if the inner tank leaks or ruptures.

Sound Enclosure Features

- Available in steel (14 gauge) formed panel, solid construction. Preassembled package offering corrosion resistant, dent resilient structure mounting directly to lift base or fuel tank.
- Power Armor automotive-grade finish resulting in advanced corrosion and abrasion protection as well as enhanced edge coverage and color retention.
- Internal exhaust silencer offering maximum component life and operator safety.
- Interchangeable modular panel construction. Allows complete serviceability or replacement without compromising enclosure design.
- · Cooling/combustion air intake with a horizontal air inlet. Sized for maximum cooling airflow.
- · Service access. Multi-personnel doors for easy access to generator set control and servicing of the fuel fill, fuel gauge, oil fill and battery.
- Cooling air discharge. Weather protective design featuring vertical air discharge. Redirects cooling air up and above the enclosure to reduce ambient noise.
- Attenuated design. Acoustic insulation UL 94 HF1 listed for flame resistance offering up to 51 mm (2 in.) mechanically restrained acoustic insulation.
- Note: Installing an additional length of exhaust tail pipe may increase backpressure levels. Please refer to the generator set spec sheet for the maximum backpressure value.

- Extended operation. Usable tank capacity offers full load standby operation of up to 72 hours.
- Power Armor Plus textured epoxy-based rubberized coating that creates an ultra-thick barrier between the tank and harsh environmental conditions like humidity, saltwater, and extreme temperatures, and provides advanced corrosion and abrasion protection.
- UL listed. Secondary containment generator set base tank meeting UL 142 tank requirements.
- NFPA compliant. Designed to comply with the installation standards of NFPA 30 and NFPA 37.
- Integral external lift lugs. Enables crane with spreader-bar lifting of the complete package (empty tank, mounted generator set, and enclosure) to ensure safety.
- Emergency pressure relief vents. Vents ensure adequate venting of inner and outer tank under extreme pressure and/or emergency conditions.
- · Normal vent cap. Vent is raised above lockable fuel fill.
- Low fuel level switch. Annunciates a 50% low fuel level condition at generator set control.
- · Leak detection switch. Annunciates a contained primary tank fuel leak condition at generator set control.
- · Electrical stub-up.


Capacity, L (gal.)		Max. Length, mm (in.)	Fuel	Tank	Fuel Ta	nk	Fuel Tank	g (lb.)	Enclosure a Fuel Tank Height, mm (in.)		Fuel Tank Height (H), mm (in.)	Sound Pressure Level, dB(A)
Lift base	0	1338 (52.7)	4121	(162.3)	1338 (5	2.7)	2699 (595	50)	2153 (84.8)		260 (10)	75
1787 (472)	24/26	4121 (16	2.3)	1338 (52.	7)	3606 (7	950)	2655	(104.5)	762	(30) 7	5

Note: Data in table is for reference only, refer to the respective ADV drawings for details.

Note: Refer to TIB-114 for generator set sound data.

Max. weight includes the generator set (wet), enclosure, silencer, and tank (no fuel). The generator set weight represents using the largest alternator option. The enclosure weight is with acoustic insulation added.

Engine Block Heater Kits

Block Heater Kit, Typical

Applicable Models

- 180-200RZXB
- 180-200REZXB
- 230-275REOZJE
- 300-500REOZJ
- 350-500REOZJB
- 350-500REOZJC
- 350-400REOZJD
- 500REOZVC
- 550-600REOZVB

Standard Features

- UL- C/US listed
- CE compliant
- Controls for automatic operation
- Compact design
- Easy to install

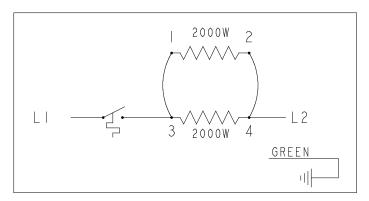
Description

The engine block heater kit heats the engine coolant in cold ambient, warming the cylinders, oil, and charge air circuit which all help to give a faster starting time. The engine block heater uses thermosiphon action to circulate warm coolant into the engine and supplies constant heating to the engine. The engine block heater helps to extend element life and gives a significant reduction in electrical consumption.

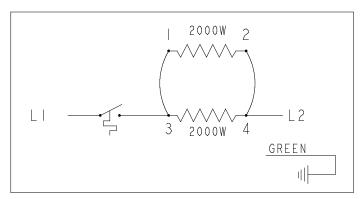
The engine block heater has a fixed setting thermostat that turns ON when the engine coolant temperature reaches 27° C (80° F) and turns OFF when the engine coolant temperature reaches 38° C (100° F).

The engine block heater kit is recommended for ambient temperatures below 10°C (50°F).

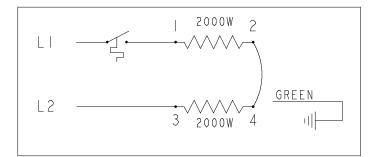
The engine block heater kits are available in 120 V, 208 V, 240 V, and 480 V versions.


Block Heater Specifications

Heating Fluid	Water, Coolant Mix (50% Glycol/50% Water)
Thermostat Temperature Range	27°-38°C (80°-100°F)
Temperature High Limit	96°C (205°F)
Max. Pressure	125 psi (860 kPa)
Inlet/Outlet Plumbing	1 in. NPT
System Ingress	NEMA 4


Specifications

Block Heater Kit Number	Component	Watts	Voltage	Phase
GM75809- KA1	GM76113	2500	90-120	1
GM75809- KA2	GM76114	2500	190-208	1
GM75809- KA3	GM76115	2500	210-240	1
GM75809- KA4	GM76116	2500	380-480	1
GM76120- KA1	GM76113	2500	90-120	1
GM76120- KA2	GM76114	2500	190-208	1
GM76120- KA3	GM76115	2500	210-240	1
GM76120- KA4	GM76116	2500	380-480	1
GM79186- KA1	GM79182	4000	190-208	1
GM79186- KA2	GM79183	4000	210-240	1
GM79186- KA3	GM79184	4000	380-480	1
GM79186- KP1	GM79182	4000	190-208	1
GM79186- KP2	GM79183	4000	210-240	1
GM79186- KP3	GM79184	4000	380-480	1
GM79187- KA1	GM79182	4000	190-208	1
GM79187- KA2	GM79183	4000	210-240	1
GM79187- KA3	GM79184	4000	380-480	1
GM79187- KP1	GM79182	4000	190-208	1
GM79187- KP2	GM79183	4000	210-240	1
GM79187- KP3	GM79184	4000	380-480	1
GM84820- KA1	GM76113	2500	90- 120	1
GM84820- KA2	GM76114	2500	190-208	1
GM84820- KA3	GM76115	2500	210-240	1
GM84820- KA4	GM76116	2500	380-480	1

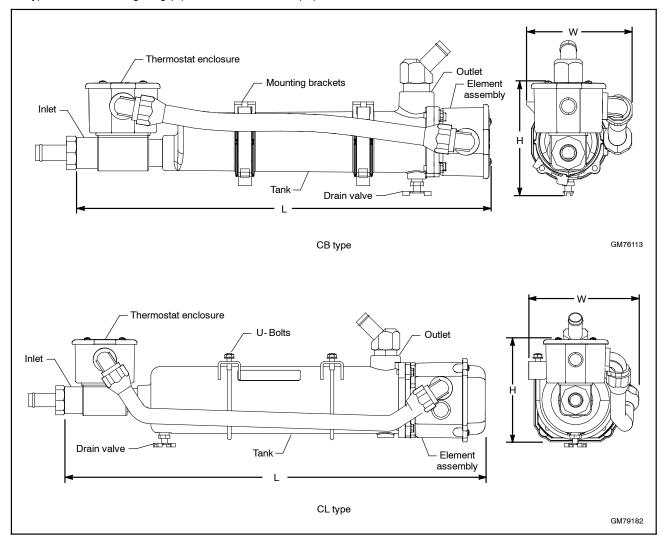

Wiring Diagram

208 VAC single phase-parallel

240 VAC single phase- parallel

480 VAC single phase- parallel

GM79182

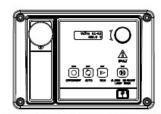


KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Dimensions and Weights

CB type block heater size, L x H x W, mm (in): $510 \times 132 \times 129 (20.1 \times 5.2 \times 5.1)$ CL type block heater size, L x H x W, mm (in): $597 \times 147 \times 158 (23.5 \times 5.8 \times 6.2)$

CB type block heater weight, kg (lb): 3 (6.9)
CL type block heater weight, kg (lb): 4.5 (10)


Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler® generator distributor for availability.

© 2020 Kohler Co. All rights reserved.

Integral Voltage Regulator with Kohler® APM402/ Decision-Maker® 3000 and Menu-Driven Selections (15-1000 kW Generator Set Models)

APM402 and Decision-Maker® 3000 Controller with Integral Voltage Regulator

The voltage regulator is integral to the controller and uses patented hybrid voltae regulator design providing $\pm 0.5\%$ no-load to full-load regulation using root-mean-square (RMS) voltage sensing. The voltage regulator features three-phase sensing and is available for 12- or 24-volt engine electrical systems.

Voltage Regulators

The following information provides general features, specifications, and functions of available voltage regulators.

This information generally applies to a single generator set and multiple generator sets with paralleling applications. Refer to the respective generator set specification sheet and see your authorized distributor for information regarding specific voltage regulator applications and availability.

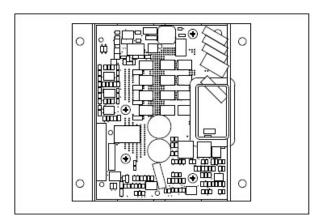
Integral Voltage Regulators with APM402/Decision-Maker® 3000 Controllers

Calibration	Digital Display	Range Settings	Default Selection
Voltage Adjustment	Volt Adj	± 10% of System Voltage	System Voltage
Underfrequency Unload or Frequency Setpoint	Frequency Setpoint	42 to 62 Hz	2.5 Hz Below Nominal Frequency
Underfrequency Unload Scope		0-10% of System Voltage (Volts per Cycle)	5% of System Voltage

- · · · · · · · ·	
Specification/Feature	Integral with APM402/Decision- Maker® 3000
Generator Set Availability	15-1000 kW
Туре	Patented Hybrid Design
Status and Shutdown Indicators	LEDs and Text LCD Display
Operating Temperature	-40 ° C to 70 ° C (-40 ° F to 158 ° F)
Storage Temperature	-40 ° C to 85 ° C (-40 ° F to 185 ° F)
Humidity	5-95% Non-Condensing
Circuit Protection	Solid-State, Redundant Software and Fuses
Sensing, Nominal	100-240 Volts (L-L), 50-60 Hz
Sensing Mode	RMS, Single- or 3-Phase
Input Requirements	8-36 VDC
Continuous Output	5 VDC @ 100mA max. 5.0 ADC with GM88453 Activator Board
Maximum Output	5 VDC @ 100mA max. 5.0 ADC with GM88453 Activator Board
Transition Frequency	42.0-62.0Hz
Exciter Field Resistance	4-30 Ohms with GM88453 Activator Board
No-Load to Full-Load Voltage Regulation	± 0.5%
Thermal Drift	<0.5% (-40 ° C to 70 ° C) [-40 ° F to 158 ° F] Range
Response Time	Less than 5µS
System Voltage Adjust.	± 10%
Voltage Adjustment	Controller Menu Knob
Remote Voltage Adjustment	not available
Paralleling Capability	not available
VAR/PF Control Input	not available

Integral Voltage Regulator with APM402/Decision-Maker® 3000 Controller

- The APM402/Decision-Maker® 3000 digital display and pushbutton/rotary dial provide access to data. A two-line LCD display provides complete and concise information. A two-line vacuum fluorescent display provides complete and concise information.
- The Decision-Maker® 3000 graphical display and pushbutton/ rotary dial provide access to data. A five-line, 35-characters per line LCD display provides complete and concise information include gain, ramp rate, reactive droop, VAR control (P, I, D gains) and PF control (P, I, D gains).
- The controllers provide ISO 8528-5, Class G3, compliance for transient response on some 20-300 kW generator set models. Both controllers support Modbus®.
- These controllers can control Fast ResponseTM II, Fast ResponseTM X, and wound field alternators using the GM88453 activator board.


Voltage Regulator Menu

- Voltage adjustment, ± 10% of system voltage
- V/Hz cut-in, 42-62 Hz
- Underfrequency unload slope, 0-10% of system voltage

Jumpers

- L1-L2 volts
- L2-L3 volts (3-phase)
- L3-L1 volts (3-phase)
- L1-N volts
- L2-N volts
- L3-N volts (3-phase)

KOHLER®

- Interfaces between the controller and alternator assembly using rotor field leads, auxiliary power windings, and optic board leads.
- Allows the Decision-Maker® controllers the ability to control a wound-field alternator using the same control signal as Fast ResponseTM alternator.
- Permits the generator set controller to control the current to the exciter field of a wound-field excited alternator.
- Contains two isolated relay driver outputs (RDO) rated at 250 mA.
 Provides RDO outputs indicating a field over-excitation condition and that the alternator is supplying voltage to the activator.

Modbus® is a registered trademark of Schneider Electric.

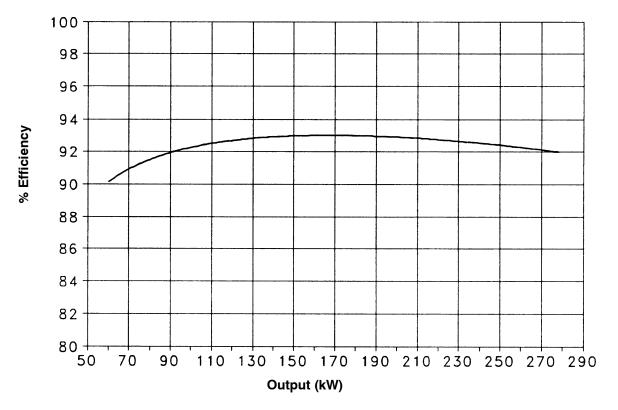
Alternator Data

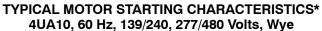
TECHNICAL INFORMATION BULLETIN

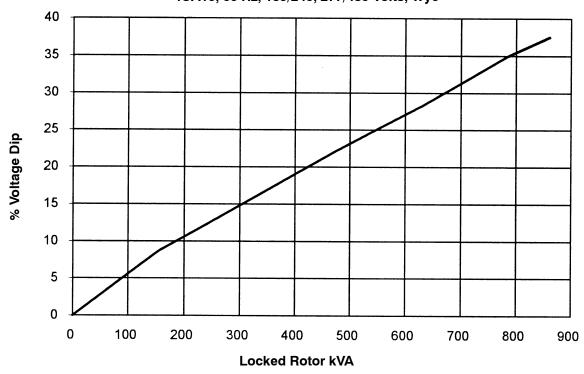
Alternator Data Sheet

Alternator Model: 4UA10 Frequency: 60 Hz Speed: 1800 RPM

Leads: 12 (6 Lead, 600 Volt)

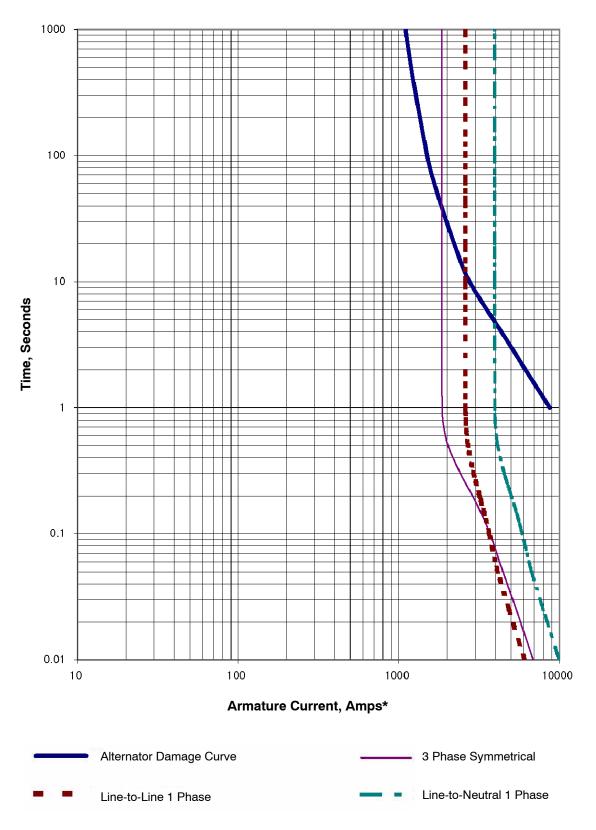

							kW* (kVA)			
				Class B		С	Class H			
Voltage L-N/L-L	Phase	Power Factor	Connection	80°C Continuous	90°C 95°C Lloyds ABS C		105°C Continuous	130°C Standby	125°C Continuous	150°C Standby
139/240 277/480	3	0.8	Wye	225.0 (281.3)	237.0 (296.3)	243.0 (303.8)	255.0 (318.8)	275.0 (343.8)	271.0 (338.8)	275.0 (343.8)
127/220 254/440	3	0.8	Wye	220.0 (275.0)	232.0 (290.0)	238.0 (297.5)	250.0 (312.5)	270.0 (337.5)	266.0 (332.5)	270.0 (337.5)
120/208 240/416	3	0.8	Wye	215.0 (268.8)	227.0 (283.8)	233.0 (291.3)	245.0 (306.3)	265.0 (331.3)	261.0 (326.3)	265.0 (331.3)
110/190 220/380	3	0.8	Wye	205.0 (256.3)	217.0 (271.3)	223.0 (278.8)	235.0 (293.8)	250.0 (312.5)	247.0 (308.8)	250.0 (312.5)
120/240	3	0.8	Delta	215.0 (268.8)	227.0 (283.8)	233.0 (291.3)	245.0 (306.3)	265.0 (331.3)	261.0 (326.3)	265.0 (331.3)
347/600	3	0.8	Wye	205.0 (256.3)	217.0 (271.3)	223.0 (278.8)	235.0 (293.8)	260.0 (325.0)	255.0 (318.8)	260.0 (325.0)

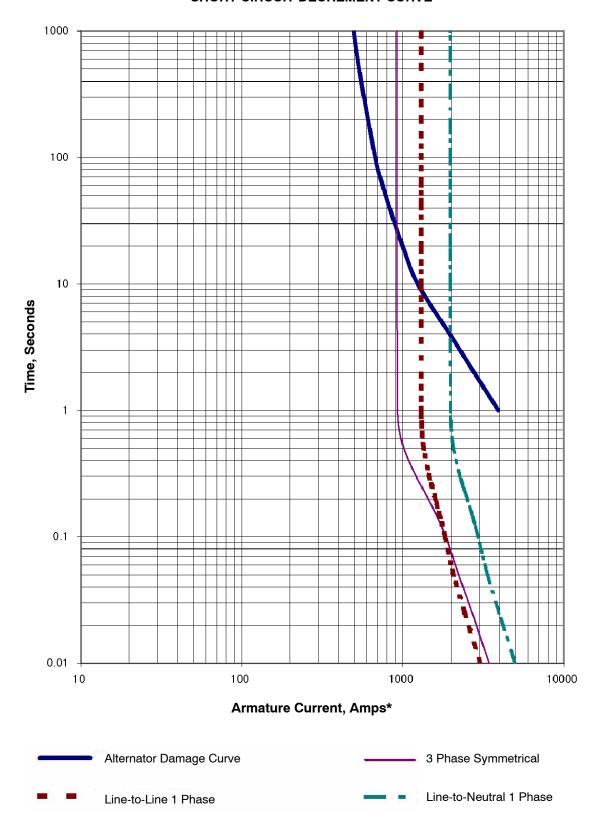

^{*} All data tested in accordance with IEEE Standard 115. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever.


Submittal Data: 139/240 Volts, 0.8 PF, 1800 RPM, 60 Hz, 3-Phase, 130°C Rise

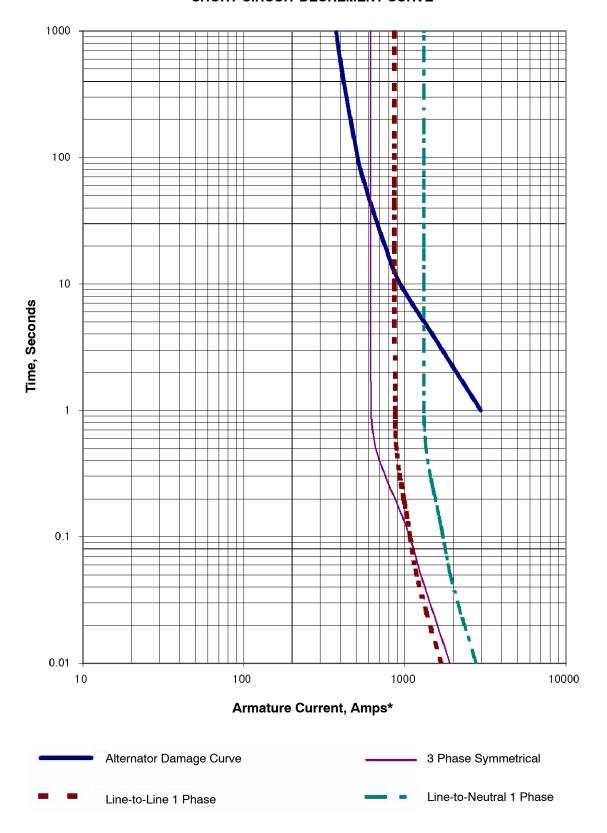
	Symbol	Per Unit	Ohms		Symbol	Value
Typical Resistances				Typical Time Constants		
Phase Resistance		0.030	0.005	Armature Short Circuit	Ta	0.016 sec.
Rotor Resistance		11.202	1.877	Transient Short Circuit	T' _d	0.171 sec.
Typical Reactances				Transient Open Circuit	T' _{do}	1.988 sec.
Synchronous				Typical Field Current		
Direct	X_d	4.097	0.686	Full Load	If_{FL}	35.76 amps
Quadrature	X_{q}	2.131	0.357	No Load	If_NL	8.45 amps
Transient				Typical Short Circuit Ratio		0.326
Unsaturated	X'_{du}	0.401	0.067	Harmonic Distortion		
Saturated	X' _d	0.352	0.059	RMS Total Harmonic Distortion		2.7%
Subtransient				Max. Single Harmonic		7 th
Direct	X" _d	0.160	0.027	Deviation Factor (No Load, L-L)		4.3%
Quadrature	X"q	0.155	0.026	Telephone Influence Factor		<50
Negative Sequence	X_2	0.158	0.026	Insulation Material Class		
Zero Sequence	X_0	0.015	0.002	per NEMA MG1-1.66		Н
				Phase Rotation		ABC

4UA10, 60 Hz, 139/240, 277/480 Volts, Wye TYPICAL ALTERNATOR EFFICIENCY*




^{*} All data tested in accordance with IEEE Standard 115. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever.

4UA10, 60 Hz, Low Wye or Delta Connection SHORT CIRCUIT DECREMENT CURVE


^{*} Instantaneous current (t=0) is asymmetric. Divide by 1.732 for symmetric.

4UA10, 60 Hz, High Wye Connection SHORT CIRCUIT DECREMENT CURVE

^{*} Instantaneous current (t=0) is asymmetric. Divide by 1.732 for symmetric.

4UA10, 60 Hz, 600 V Connection SHORT CIRCUIT DECREMENT CURVE

 $[\]star$ Instantaneous current (t=0) is asymmetric. Divide by 1.732 for symmetric.

Sound Data

TECHNICAL INFORMATION BULLETIN

Generator Set Sound Data Sheet

				Sound Pressure Data in dB(A)								
Generator Set Model	Hz	Load	Raw Exhaust	Open Unit, Isolated Exhaust	Weather Enclosure	Sound Enclosure						
050050715	60	100% Load	116.5	91.7	89.8	75.2						
250REOZJE	00	No Load	101.7	84.9	83.0	67.1						

Note: Sound pressure data is the logarithmic average of eight perimeter measurement points at a distance of 7 m (23 ft.), except Raw Exhaust data which is a single measurement point at 1 m (3.3 ft.) from the mouth of a straight pipe exhaust.

250REOZJE 60 Hz

						S	ound P	ressure	Levels	dB(A)						
Load	Distance,	Enclosure	Measurement		(Octave E	Band Ce	nter Fred	quency (Hz)		Overall				
Loau	m (ft.)	Eliciosure	Position	63	125	250	500	1000	2000	4000	8000	Level				
			Right	62.7	67.4	67.2	71.8	65.1	60.2	59.3	56.4	75.2				
			Front-Right	59.4	66.4	70.6	63.6	66.5	63.2	56.6	53.6	74.2				
		Sound		Front	61.5	64.9	66.1	70.9	65.0	61.2	58.4	54.1	74.2			
								Front-Left	63.0	66.7	67.4	72.2	66.4	62.1	57.4	57.0
100%	7 (23)		Left	63.2	67.4	66.8	73.3	66.3	63.2	58.7	61.0	74.8				
Load	()		Back-Left	61.5	65.4	64.4	71.7	65.2	64.5	59.4	57.4	76.3				
			Back	63.9	68.9	67.2	72.7	64.2	64.1	61.6	62.1	74.8				
			Back-Right	58.4	64.8	66.5	71.2	66.3	64.7	60.0	55.1	76.3				
			8-pos. log avg.	62.0	66.7	67.4	71.6	65.7	63.2	59.2	58.1	75.2				

						S	Sound P	ressure	Levels	dB(A)		
Load	Distance, m (ft.)	Enclosure	Measurement Position	Right	Front- Right	Front	Front- Left	Left	Back- Left	Back	Back- Right	8-pos. log avg.
100% Load	7 (23)	Weather	Overall Levels	88.8	87.2	86.3	91.1	91.9	89.3	82.9	93.1	89.8

						S	ound P	ressure	Levels	dB(A)				
Load	Distance,		Measurement		(Octave E	Band Cei	nter Fred	quency (Hz)		Overall		
Loau	m (ft.)		Position	63	125	250	500	1000	2000	4000	8000	Level		
			Right	60.1	67.5	74.1	74.8	83.3	82.7	79.9	87.8	90.7		
		Front-Right	57.0	69.4	75.1	81.6	82.6	83.2	80.4	81.0	89.1			
		Open Unit	Open I Init	Onen I Init	Front	60.1	70.4	76.6	79.8	83.4	82.4	78.3	76.4	88.2
					Open Unit.	Front-Left	68.5	74.9	78.7	83.3	86.4	86.8	82.9	87.2
100%	7 (23)	Isolated	Left	70.1	74.7	77.3	83.1	88.0	88.8	83.3	86.8	93.8		
Load	. (==)	Exhaust	Back-Left	66.1	74.1	75.6	77.5	84.4	84.6	82.4	86.0	91.2		
			Back	62.0	66.4	72.8	76.0	78.6	78.2	76.2	77.2	84.8		
			Back-Right	61.7	70.2	74.8	76.3	81.6	82.8	79.2	87.8	95.0		
			8-pos. log avg.	65.3	72.0	76.0	80.1	84.3	84.7	80.9	85.5	91.7		

					S	ound P	ressure	Levels	dB(A)		
Load	Distance,	Exhaust	Octave Band Center Frequency (Hz)								Overall
Loau	m (ft.)	Extrausi	63	125	250	500	1000	2000	4000	8000	Level
100% Load	1 (3.3)	Raw Exhaust (No Silencer)	88.8	98.5	105.4	110.5	107.1	109.1	109.7	107.0	116.5

250REOZJE	60 Hz
-----------	-------

				Sound Pressure Levels dB(A)								
Lood	Distance,	Грајасина	Measurement	Octave Band Center Frequency (Hz)								
Load m (ft.) Enclosure	Position	63	125	250	500	1000	2000	4000	8000	Level		
			Right	49.3	55.7	58.3	62.5	61.1	54.5	50.0	42.1	66.6
		Front-Right	44.0	58.7	64.2	58.5	60.4	57.0	49.8	40.6	67.7	
) Sound	Front	48.0	54.5	61.0	62.3	60.3	55.0	50.8	41.5	66.8
			Front-Left	48.9	56.4	60.1	63.9	61.9	56.0	48.6	40.1	67.8
No .	7 (23)		Left	48.1	56.3	59.3	62.3	61.3	54.9	47.9	43.7	66.8
Load			Back-Left	48.3	55.7	56.3	60.3	59.9	56.2	49.4	41.1	65.4
			Back	51.4	63.0	63.9	59.6	59.5	58.3	56.2	48.2	68.8
			Back-Right	49.7	59.2	56.1	60.1	60.3	57.3	50.8	40.8	66.1
			8-pos. log avg.	48.9	58.3	60.8	61.5	60.6	56.3	51.3	43.2	67.1

					Sound Pressure Levels dB(A)							
Load	Distance, m (ft.)	Enclosure	Measurement Position	Right	Front- Right	Front	Front- Left	Left	Back- Left	Back	Back- Right	8-pos. log avg.
No Load	7 (23)	Weather	Overall Levels	82.8	84.5	81.1	85.2	83.0	83.3	78.6	82.5	83.0

				Sound Pressure Levels dB(A)								
1	Distance,		Measurement	Octave Band Center Frequency (Hz)								
Load	m (ft.) Position	63	125	250	500	1000	2000	4000	8000	Level		
			Right	52.3	62.8	71.1	72.9	81.3	79.2	75.6	67.9	84.7
			Front-Right	49.1	63.9	73.1	79.7	81.3	80.9	77.0	69.4	86.4
		Front	50.6	64.4	72.7	73.4	78.9	77.6	72.3	64.6	83.0	
		Open Unit, Isolated	Front-Left	53.4	66.5	73.6	76.1	83.6	81.8	77.1	70.4	87.1
No	7 (23)		Left	57.0	65.0	72.1	73.9	81.2	79.8	75.0	68.1	84.9
Load	(==)	Exhaust	Back-Left	56.6	67.7	70.9	72.0	81.9	79.8	75.4	67.7	85.2
			Back	53.7	65.1	68.2	71.2	77.2	72.1	72.9	59.7	80.5
			Back-Right	52.7	65.6	71.9	75.1	80.0	79.1	75.4	67.7	84.4
			8-pos. log avg.	53.9	65.4	72.0	75.1	81.0	79.5	75.4	67.8	84.9

				Sound Pressure Levels dB(A)							
Lood	Distance,	Exhaust	Octave Band Center Frequency (Hz)								
Loau	Load m (ft.) Exhaust		63	125	250	500	1000	2000	4000	8000	Level
No Load	1 (3.3)	Raw Exhaust (No Silencer)	75.4	83.4	89.2	94.3	95.7	95.9	94.5	88.4	101.7

Emissions Data

250REOZJE

60 HZ. DIESEL INDUSTRIAL GENERATOR SET EMISSION DATA SHEET

ENGINE INFORMATION

 Model:
 John Deere, 6090HF484B
 Bore:
 118.4mm (4.66 in.)

 Nameplate BHP @ 1800 RPM:
 385
 Stroke:
 136mm (5.35 in.)

Type: 4-Cycle, 6 Cylinder, Inline Displacement: 9.0 L (548 cu. in.)

Aspiration: Turbocharged, Charge Air-Cooled

Compression Ratio 16.0:1 EPA Family: MJDXL09.0114 EPA Certificate: MJDXL09.0114-006

	Table 1							
	1/4	1/2	3/4	Full				
PERFORMANCE DATA:	<u>Standby</u>	<u>Standby</u>	<u>Standby</u>	<u>Standby</u>				
Engine bkW @ Stated Load	72	144	215	287				
Fuel Consumption (g/kWh)	247	248	232	200				
Exhaust Gas Flow (m³/min)				54				
Exhaust Temperature (°C)				625				

EXHAUST EMISSION DATA:

HC (Total Unburned Hydrocarbons)
NOx (Oxides of Nitrogen as NO2)

CO (Carbon Monoxide)
PM (Particulate Matter)

Table 2						
EPA D2 Cycle 5-mode weighted						
0.05						
3.80						
0.9						
0.11						

Values are in g/kWh unless otherwise noted

TEST METHODS AND CONDITIONS

The emission data listed is measured from a laboratory test engine according to the test procedures of 40 CFR 89 or 40 CFR 1039, as applicable. The test engine is intended to represent nominal production hardware, and there is no guarantee that every production engine will have identical test results. The family parent data represents multiple ratings and this data may have been collected at a different engine speed and load. Emission results may vary due to engine manufacturing tolerances, engine operating conditions, fuels used, alternate test methods, or other conditions.

Data and specifications subject to change without notice.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2022 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Deere & Company (U.S. Manufacturer or Importer)

Certificate Number: NJDXL09.0114-007

Effective Date: 08/09/2021

Expiration Date: 12/31/2022

Byron J Bunker, Division Director

Issue Date: 08/09/2021

Revision Date: N/A

Model Year: 2022

Manufacturer Type: Original Engine Manufacturer

Engine Family: NJDXL09.0114

Mobile/Stationary Indicator: Stationary Emissions Power Category: 225<=kW<450

Fuel Type: Diesel

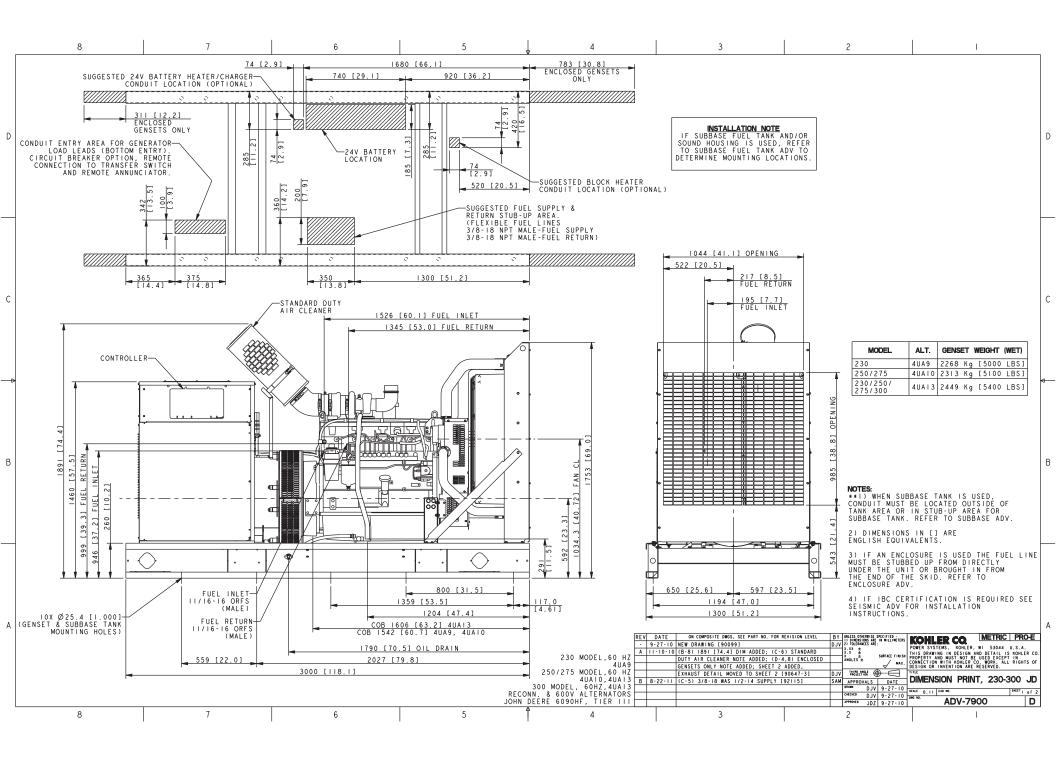
After Treatment Devices: No After Treatment Devices Installed

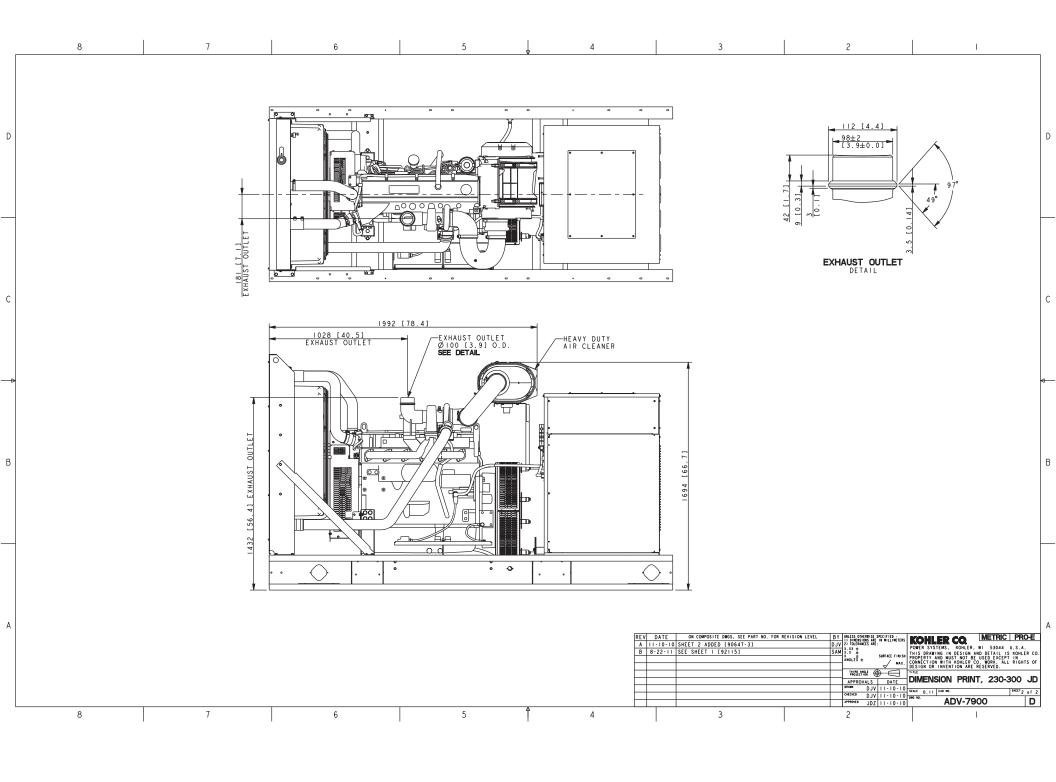
Non-after Treatment Devices: Electronic Control, Smoke Puff Limiter, Engine Design

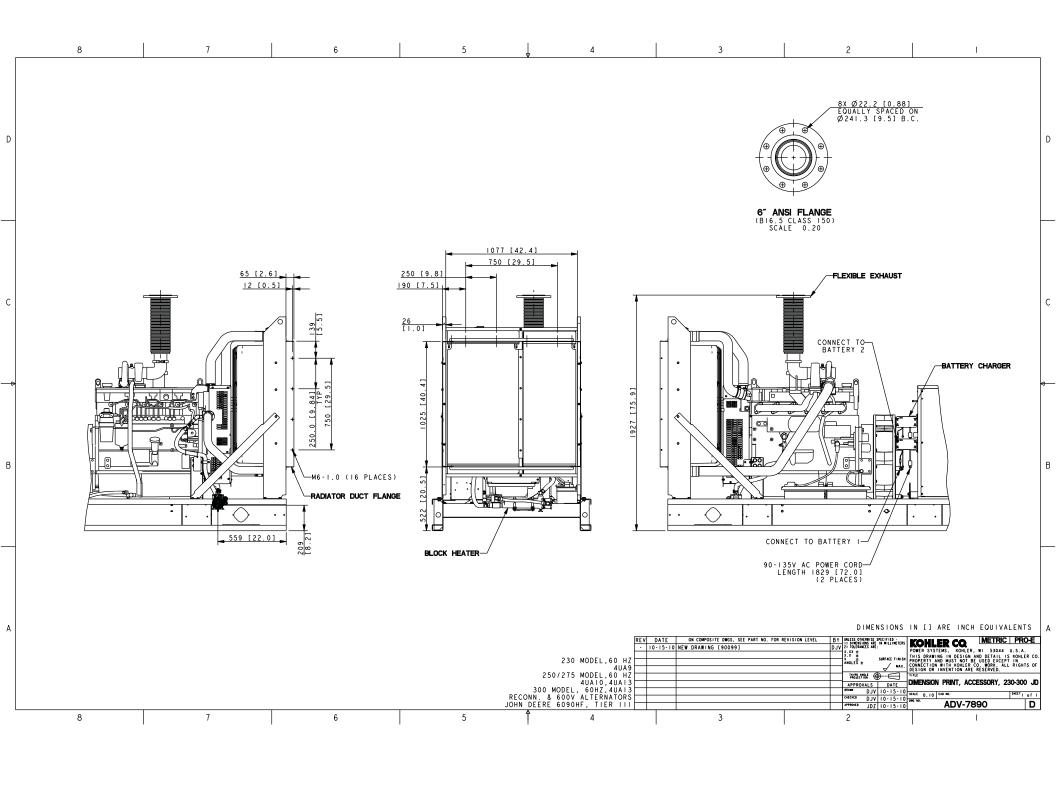
Compliance Division

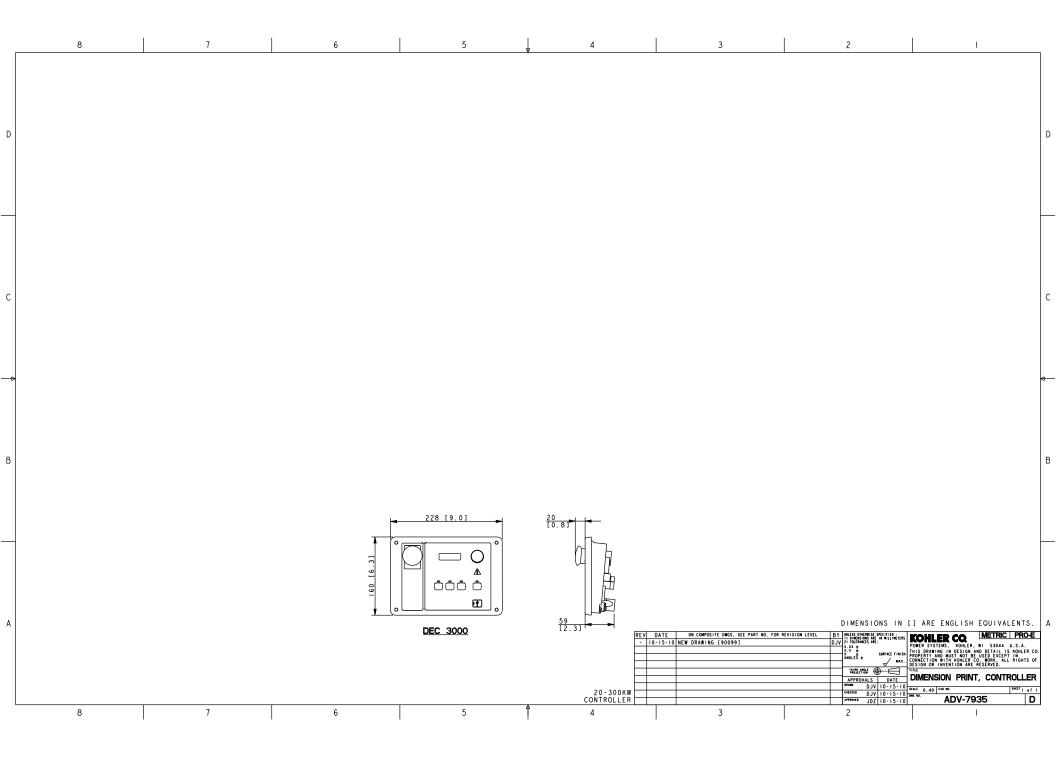
Modification, Non-standard Non-After Treatment Device Installed

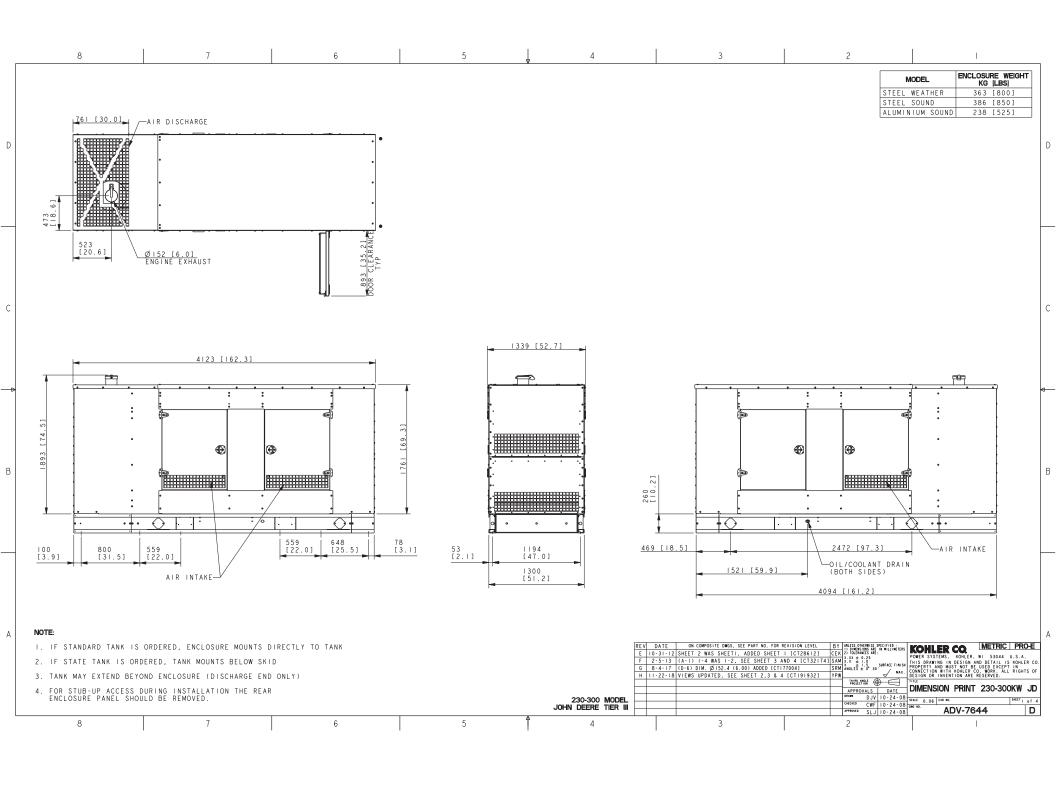
Pursuant to Section 111 and Section 213 of the Clean Air Act (42 U.S.C. sections 7411 and 7547) and 40 CFR Part 60, and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

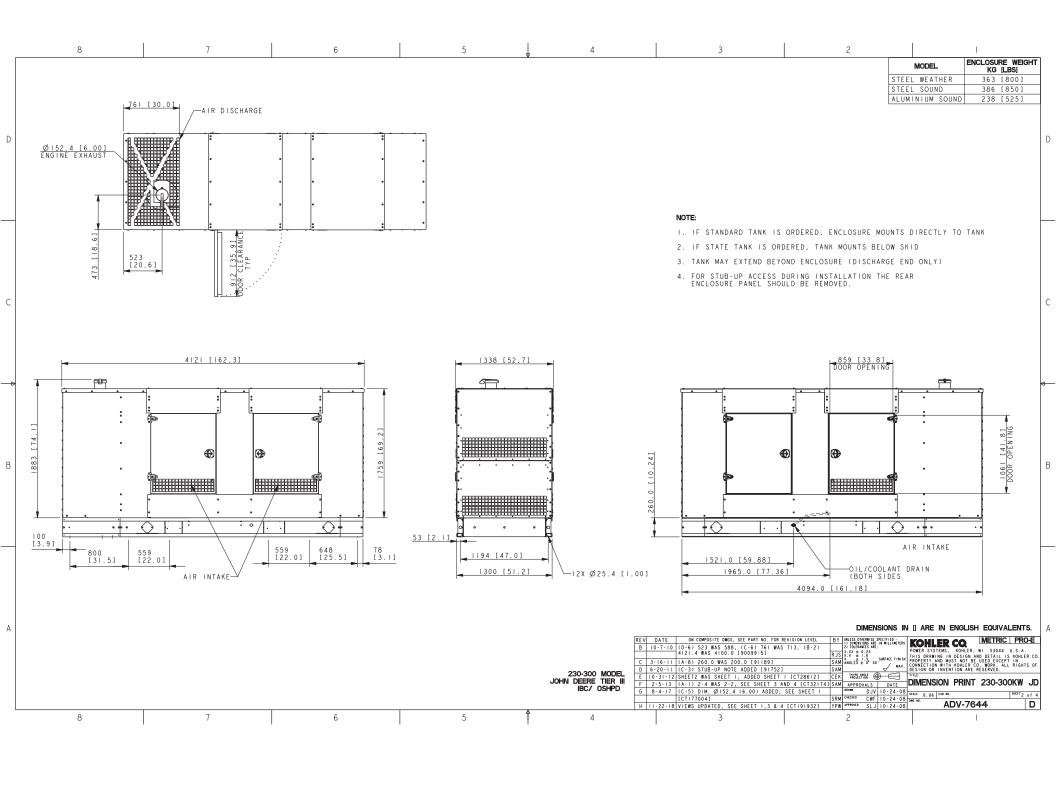

This certificate of conformity covers only those new compression-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60.

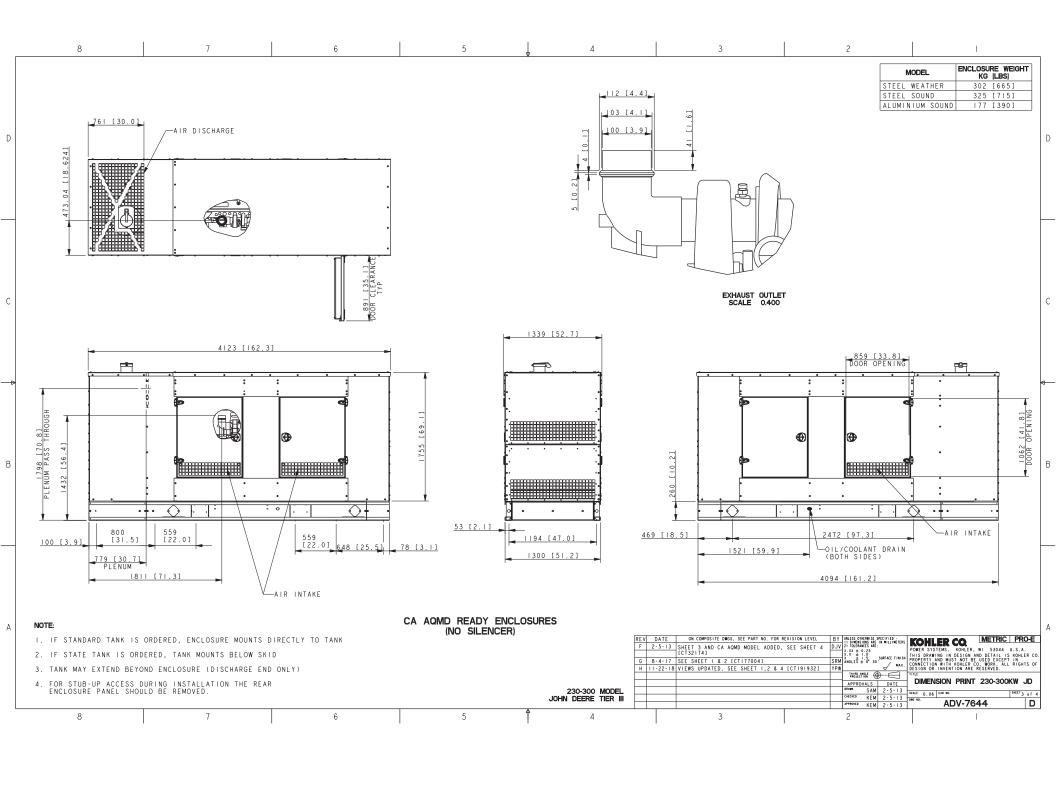

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void ab initio for other reasons specified in 40 CFR Part 60.

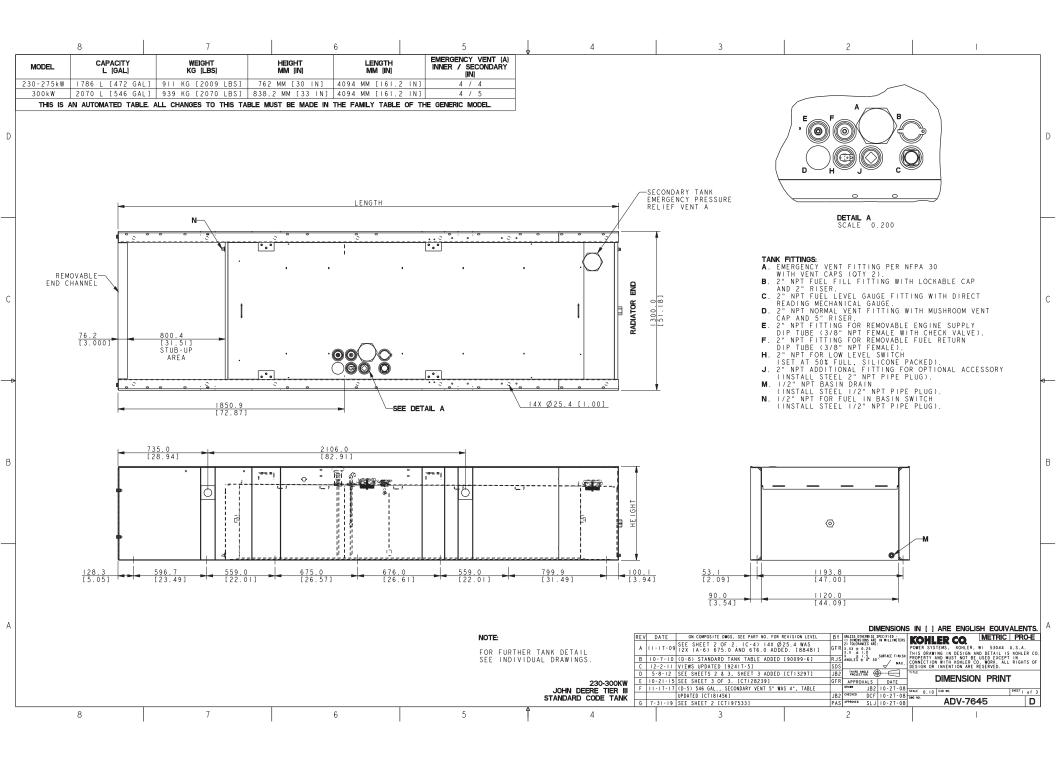

This certificate does not cover engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

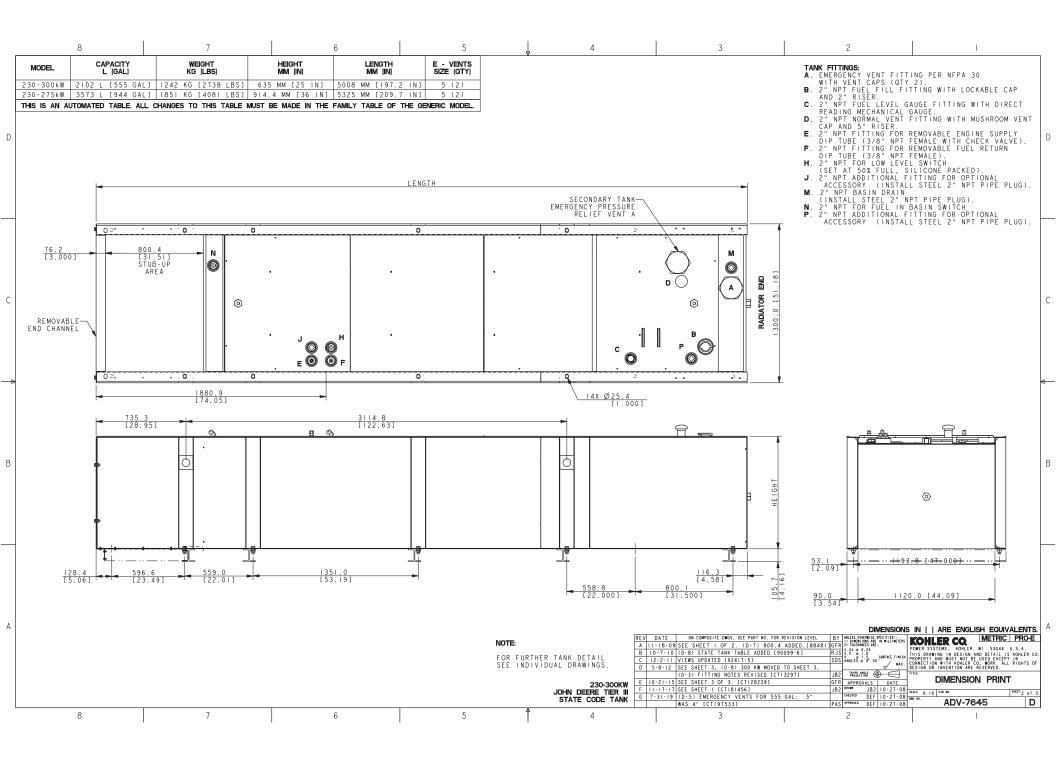


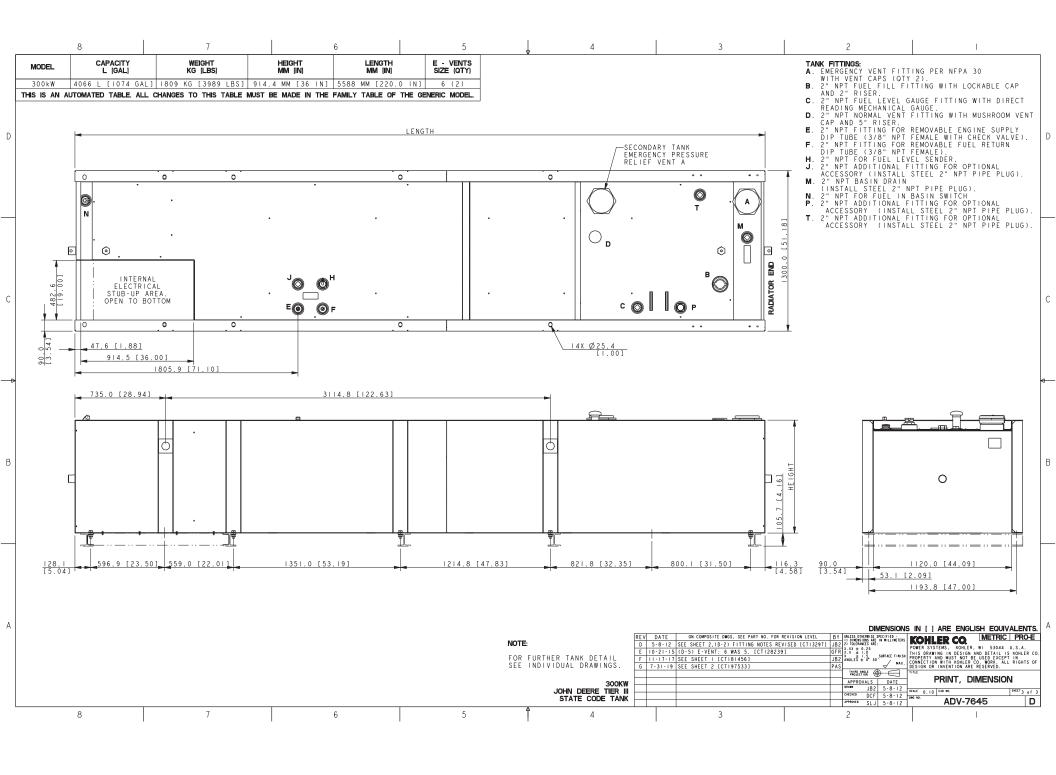

Dimensional Drawings

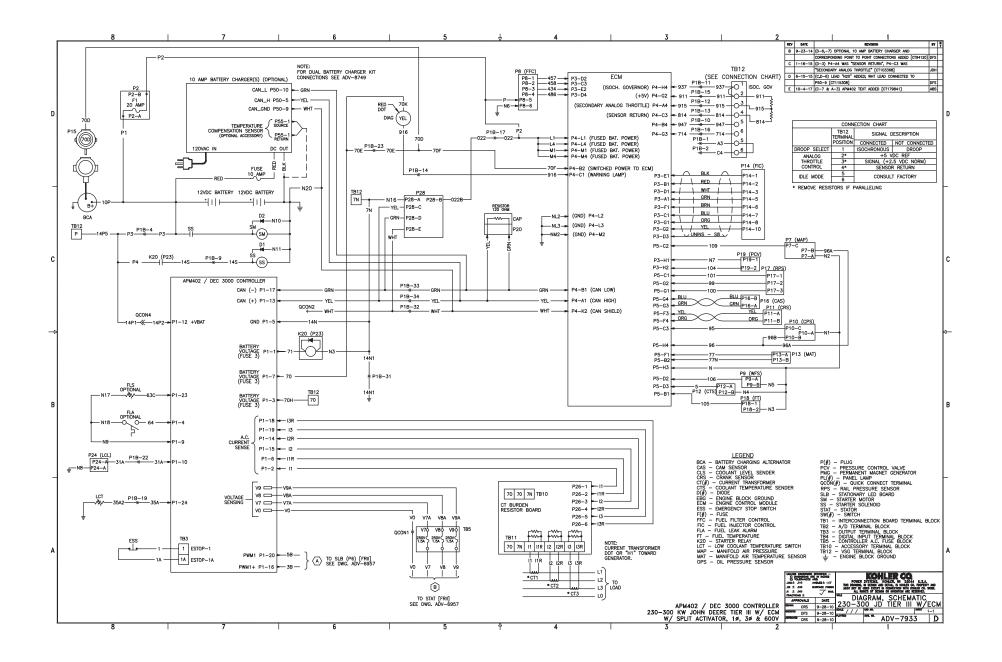


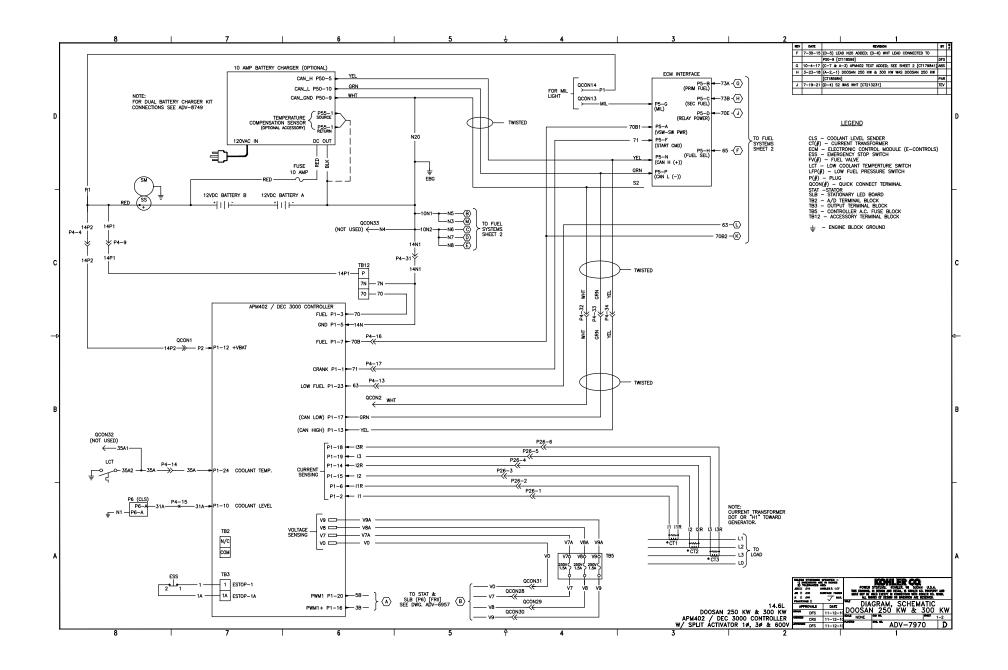


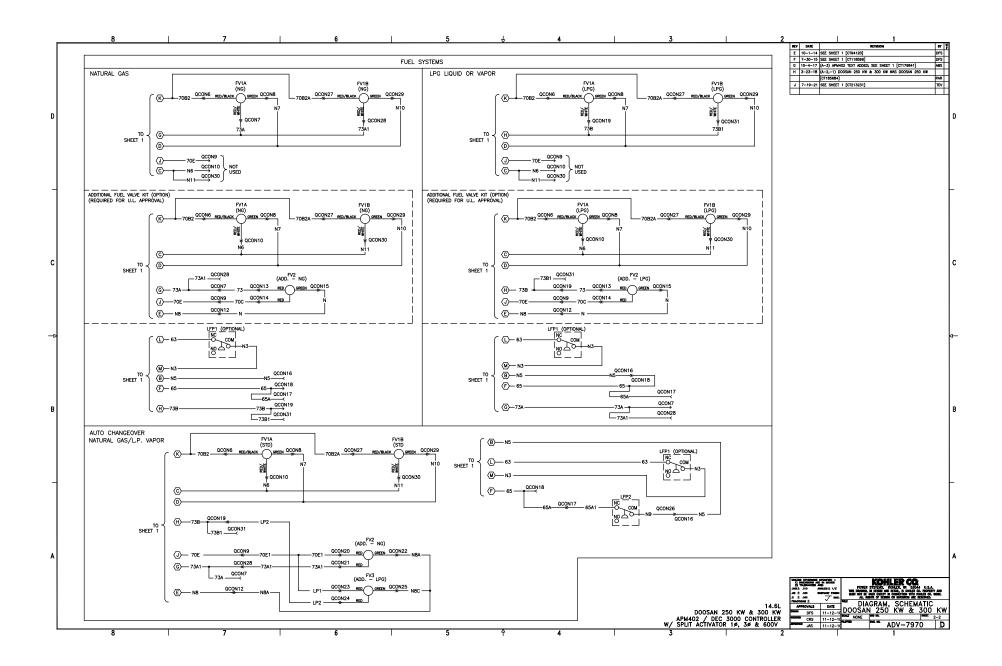


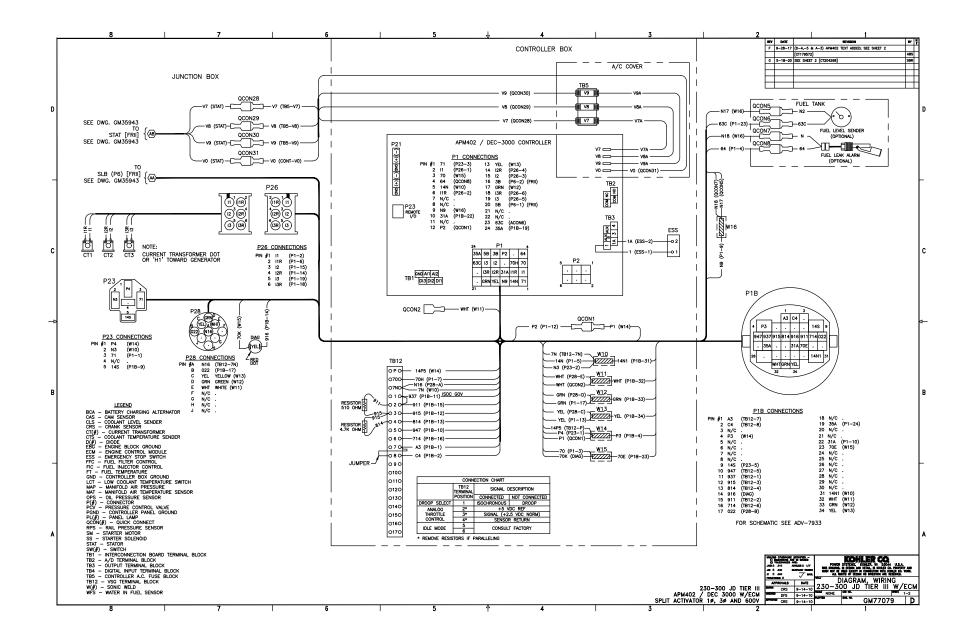


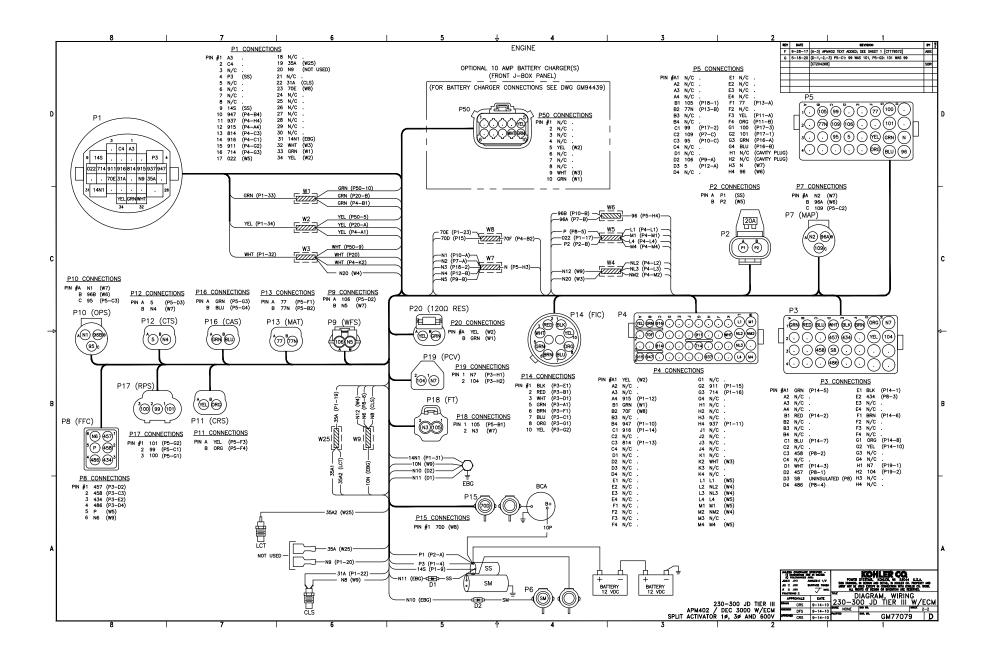


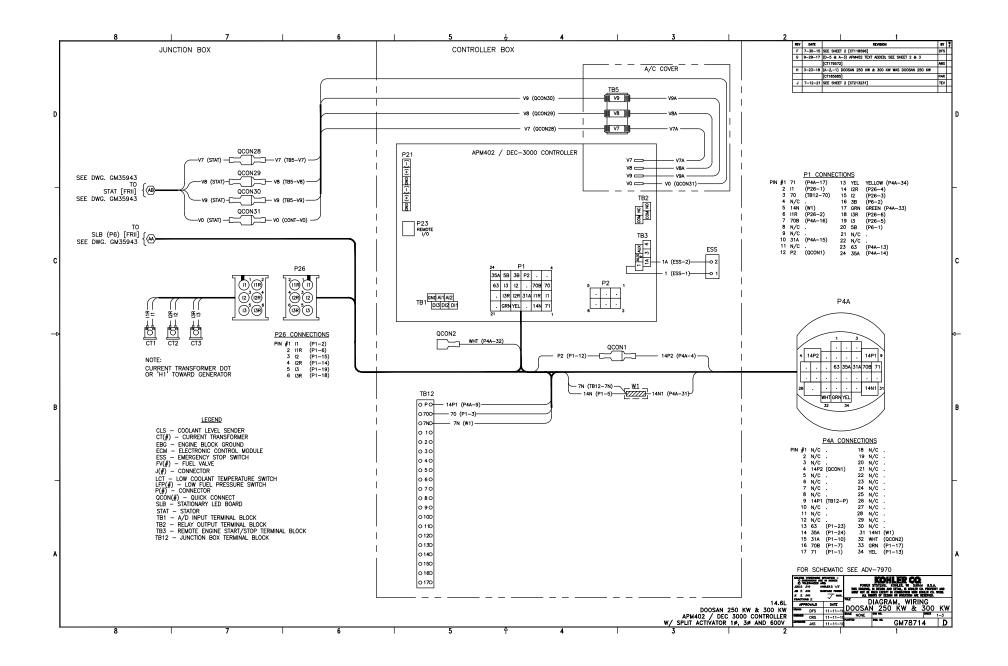


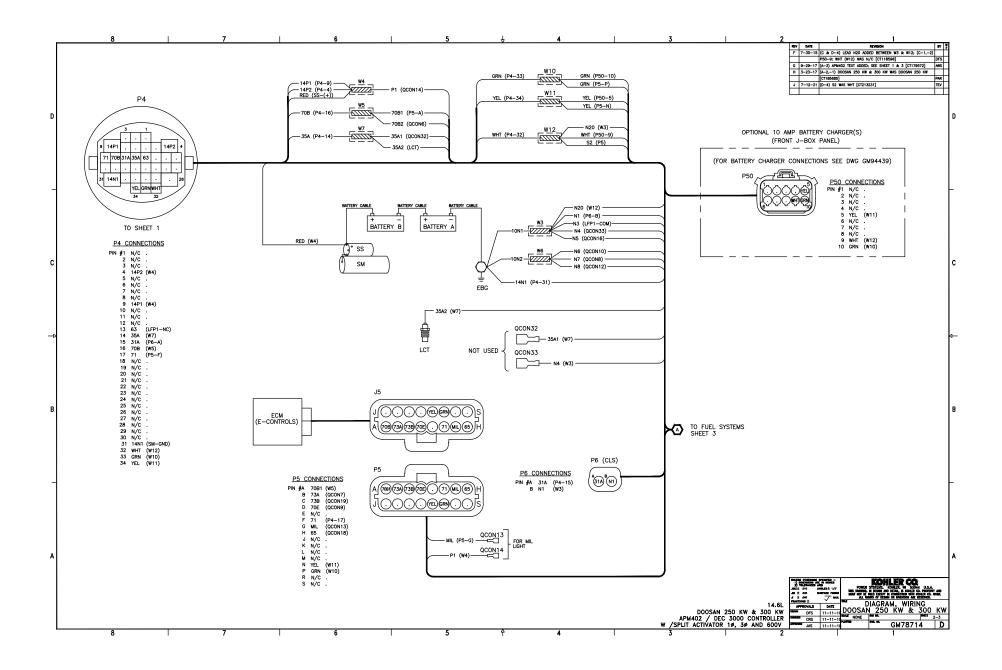


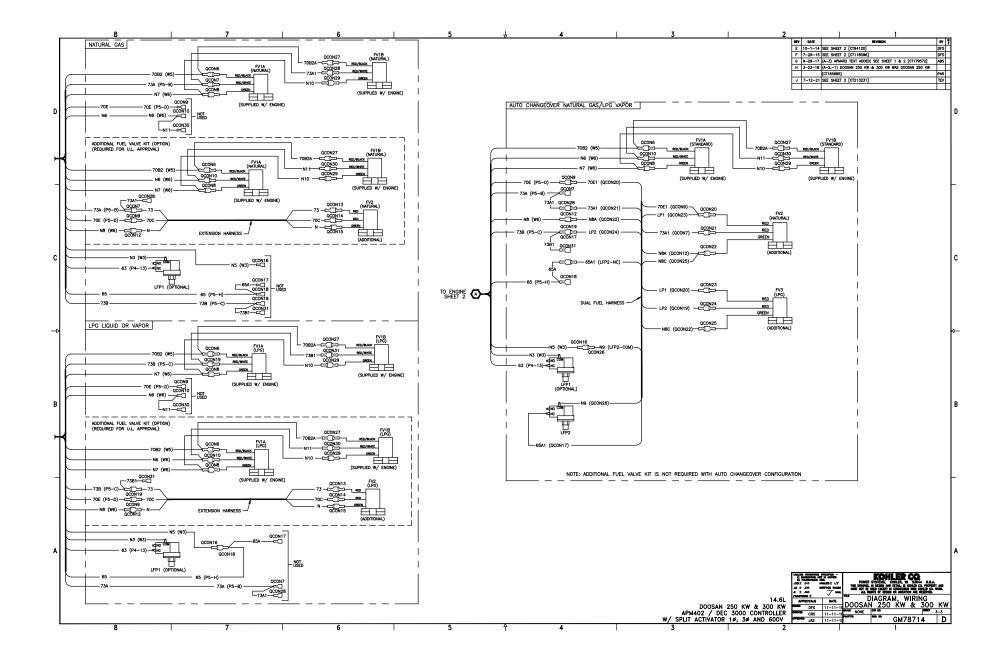


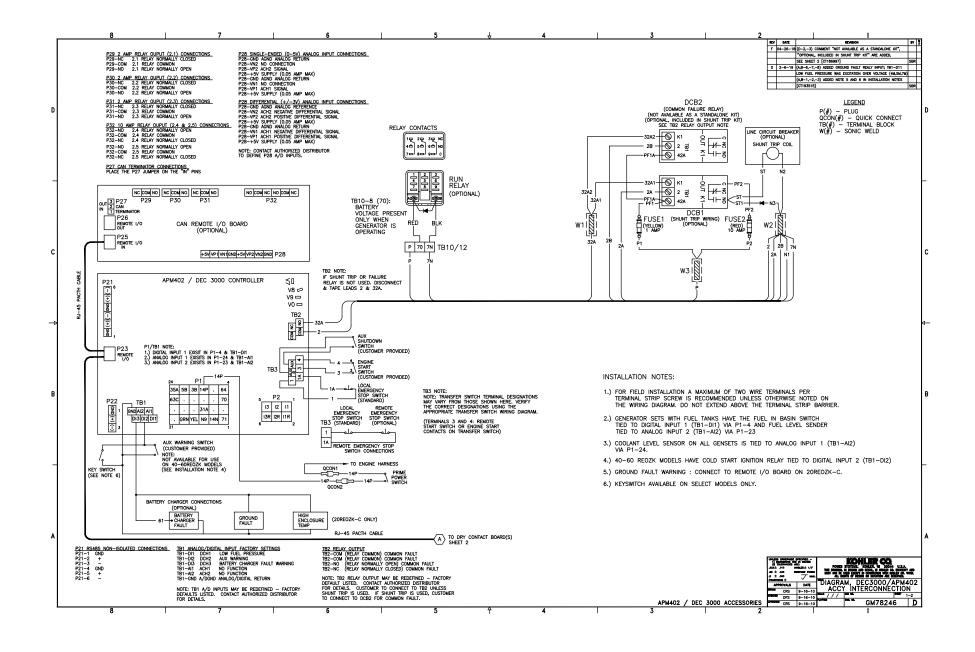


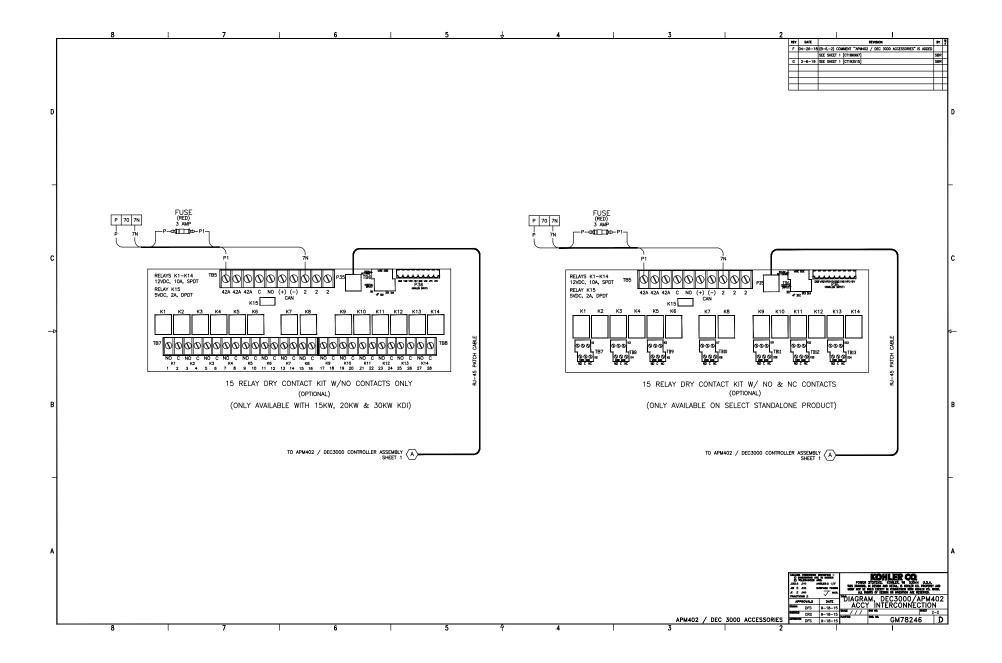

Wiring Schematics

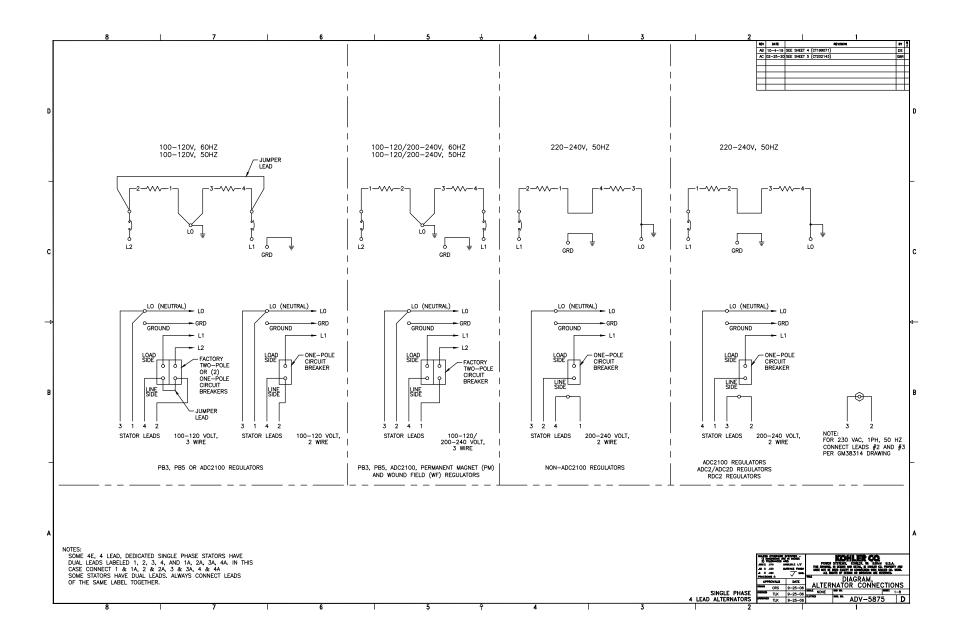


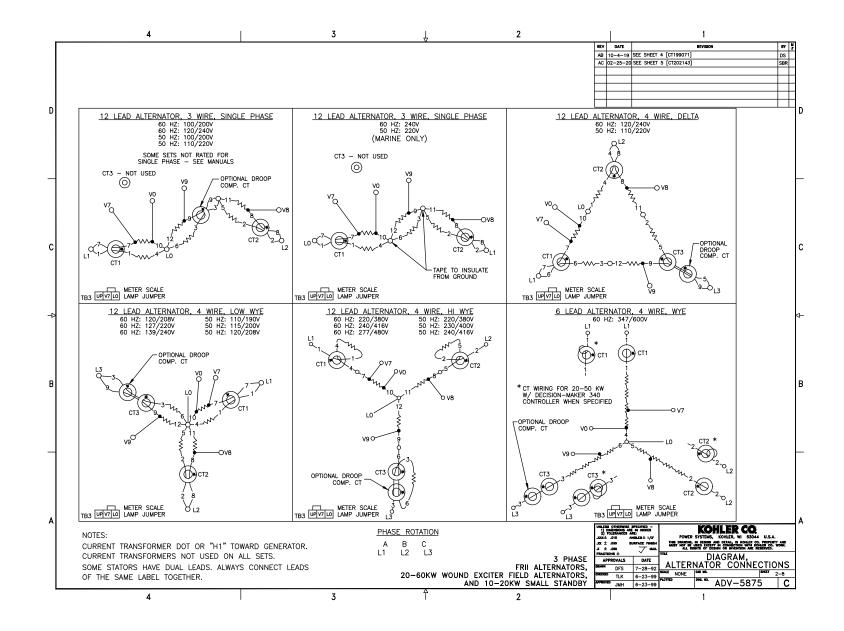


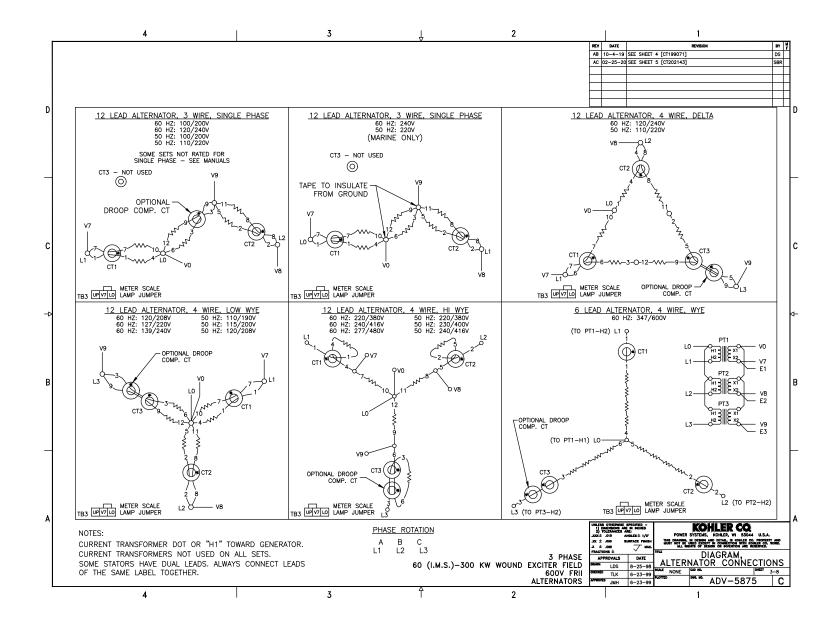




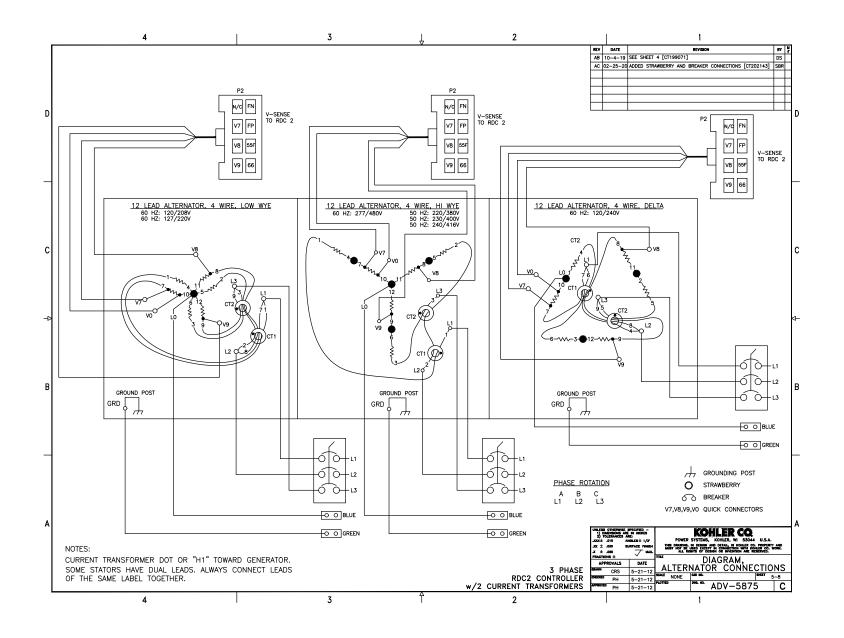


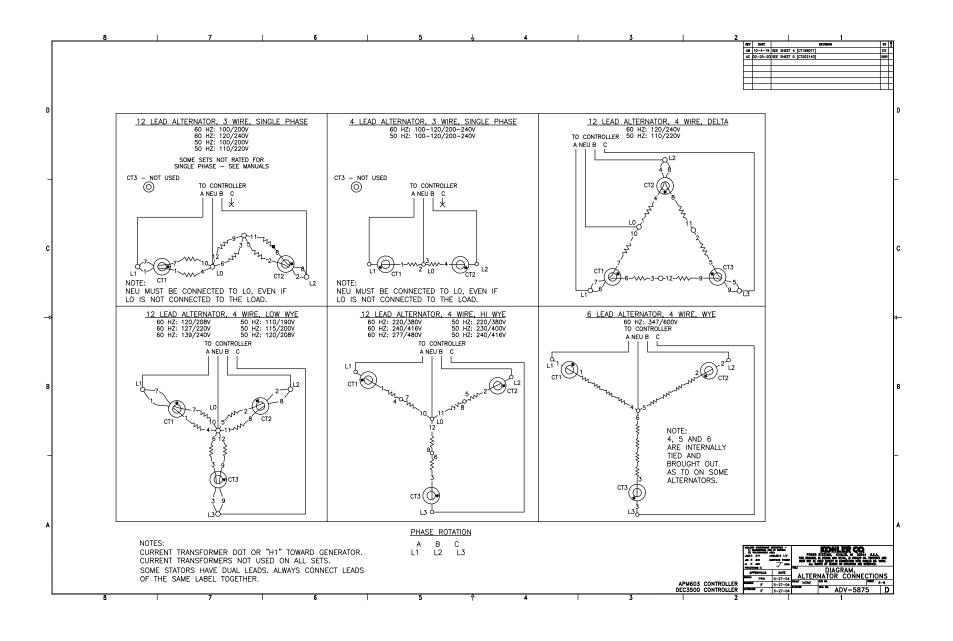


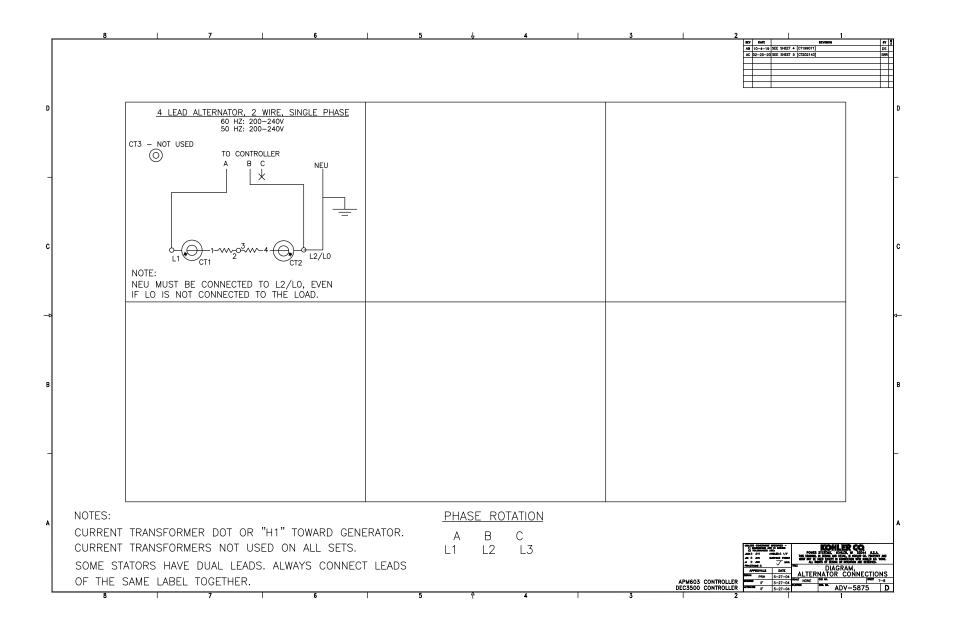


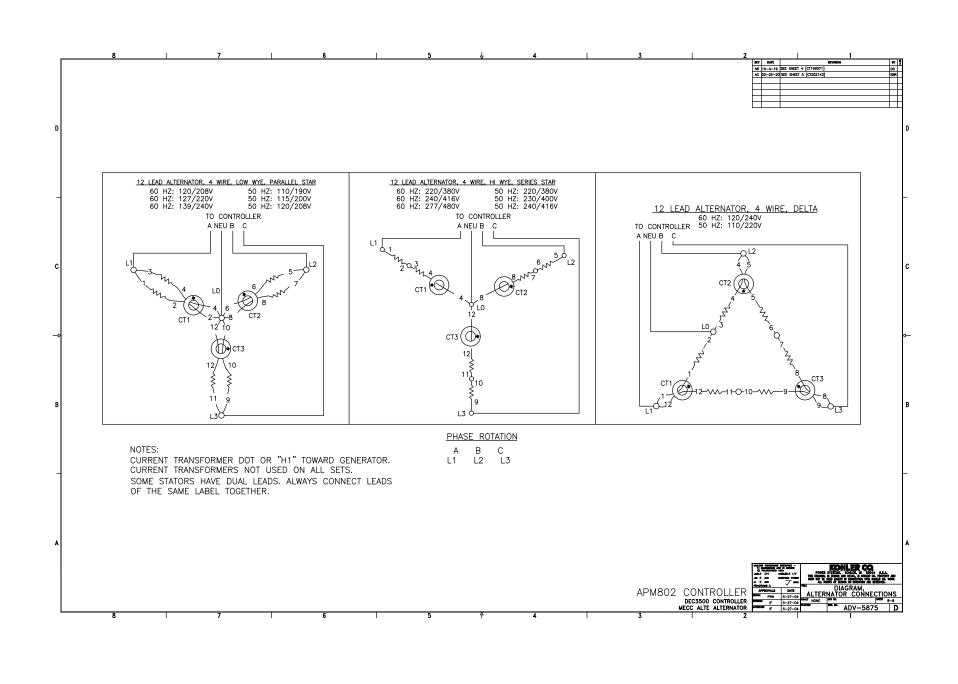


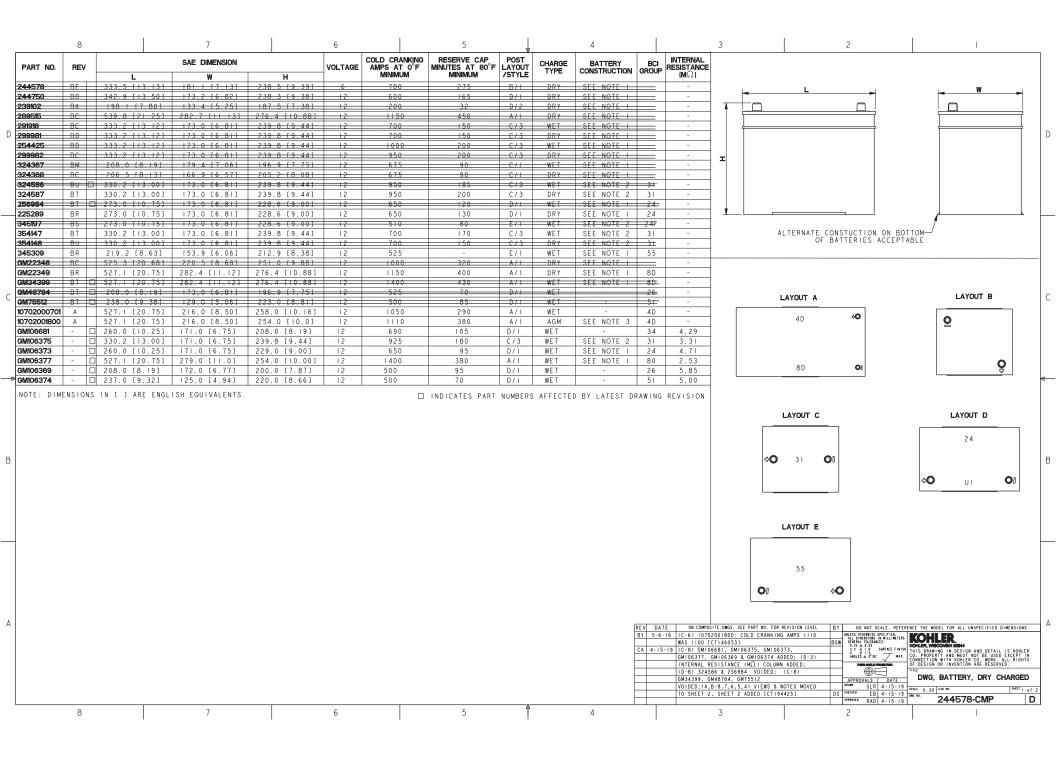


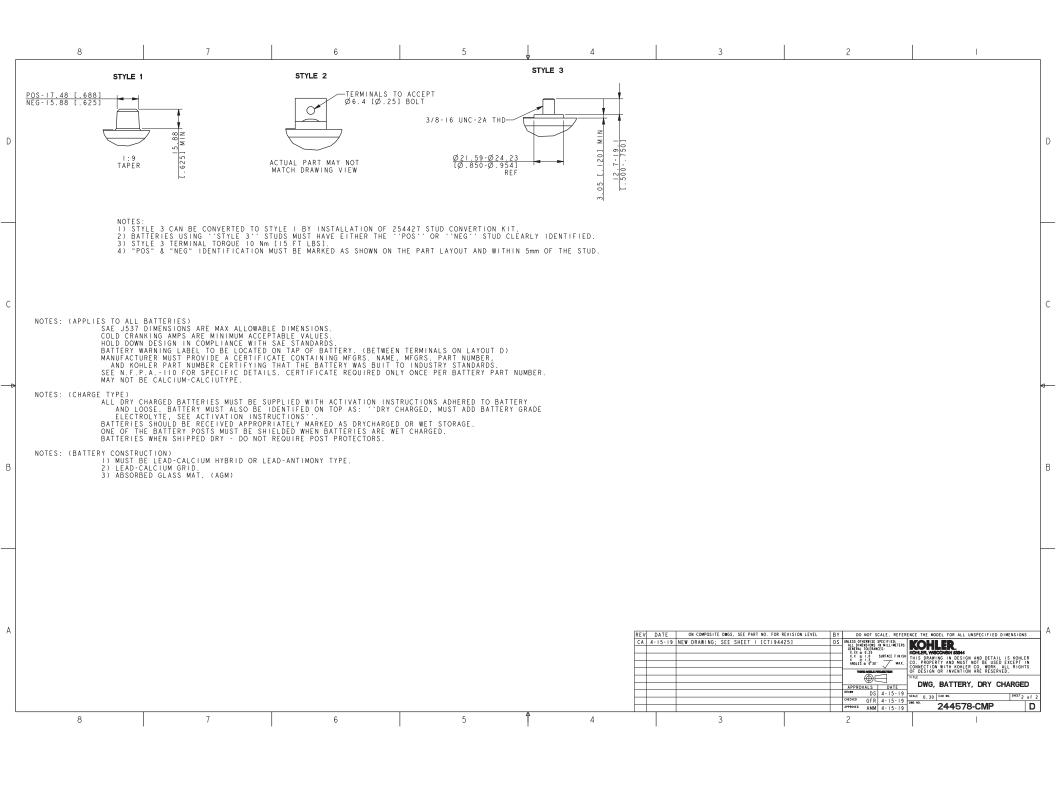


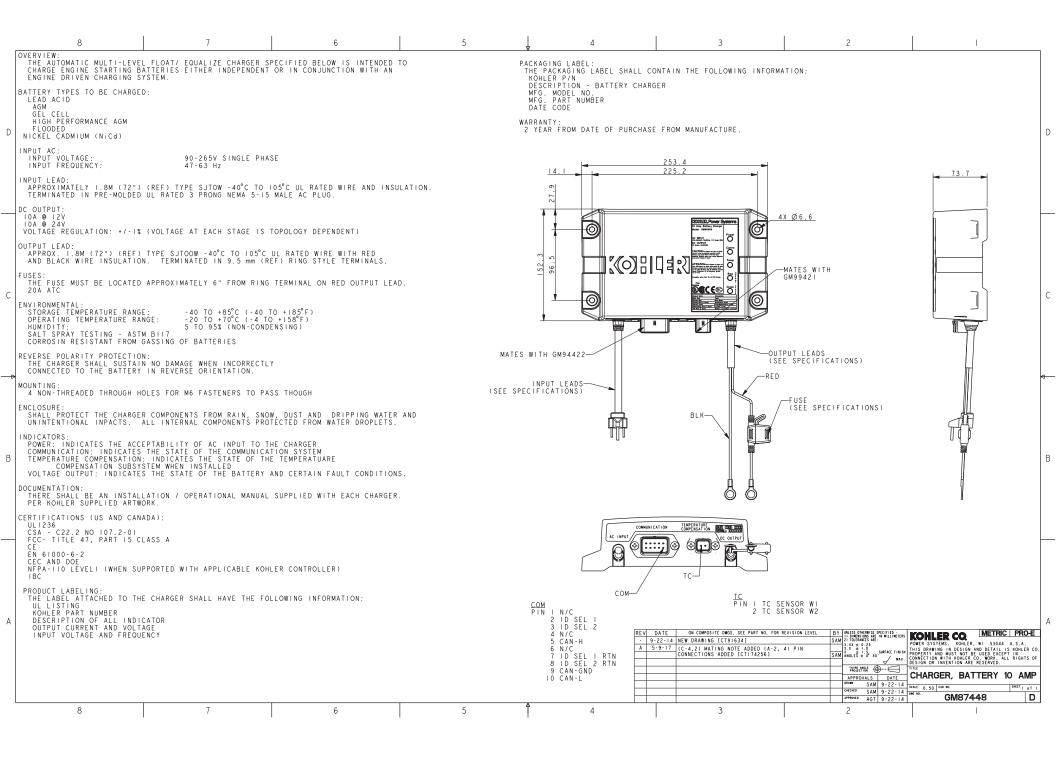


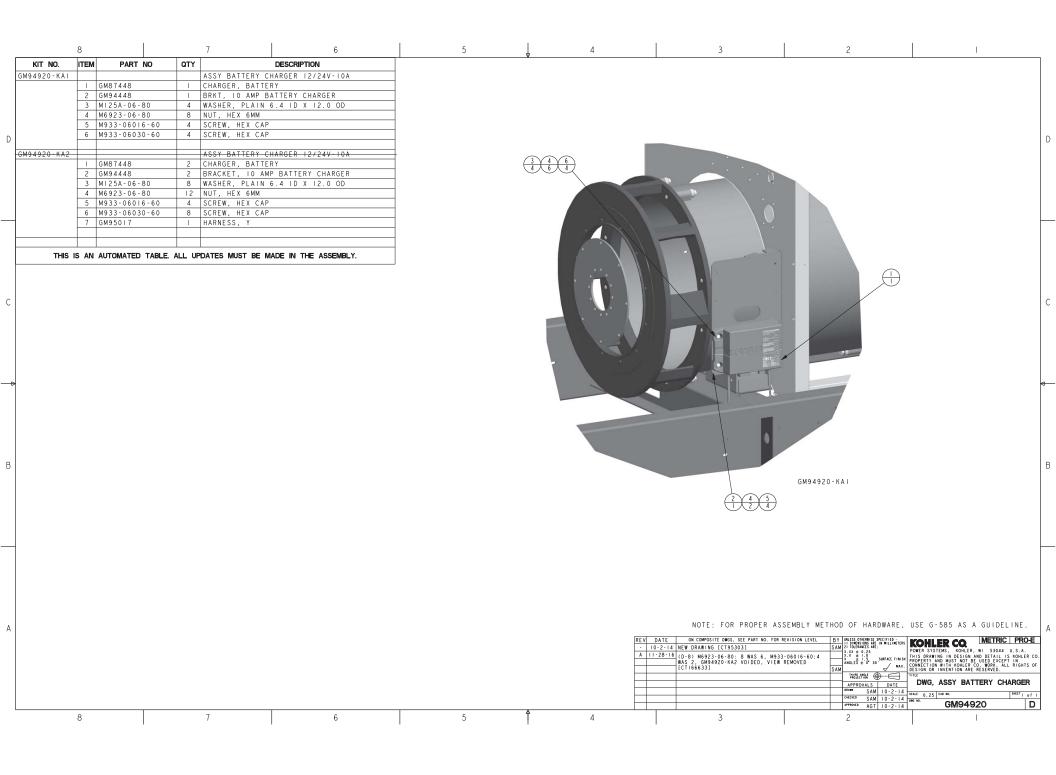


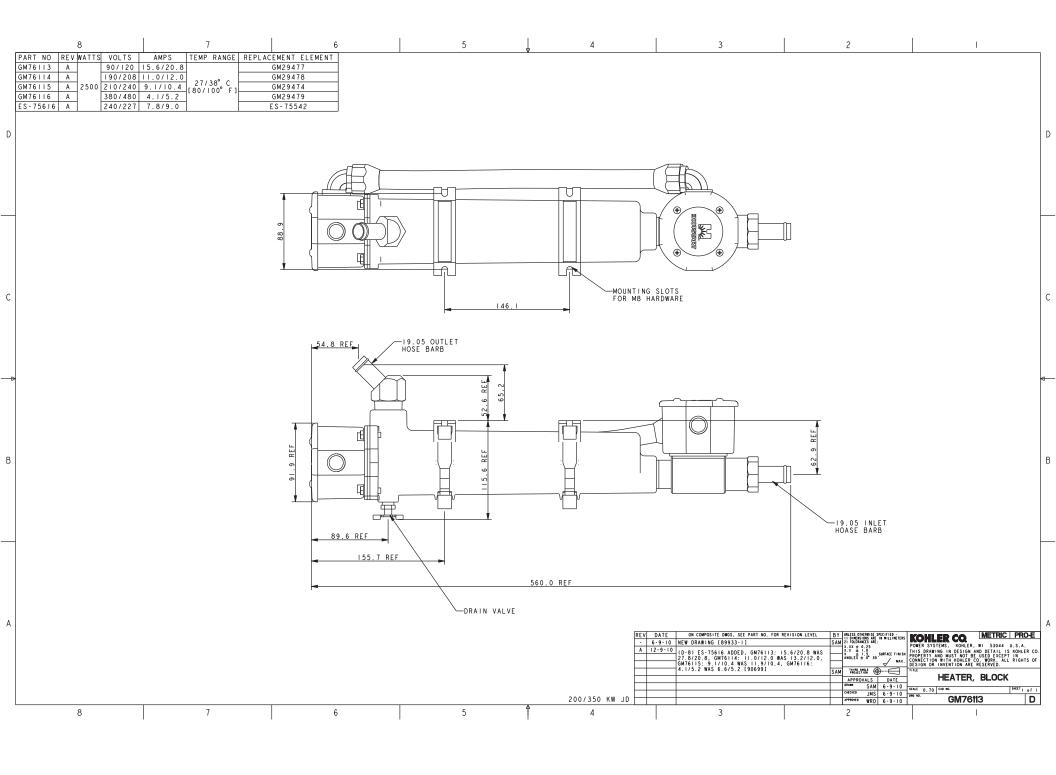


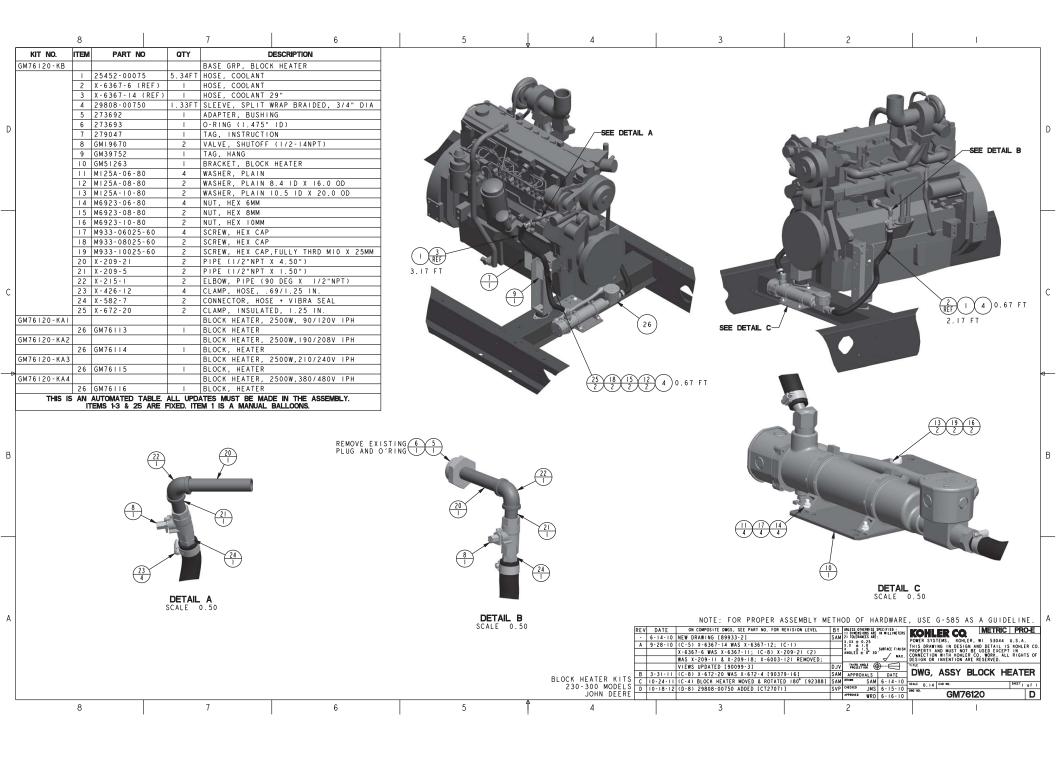


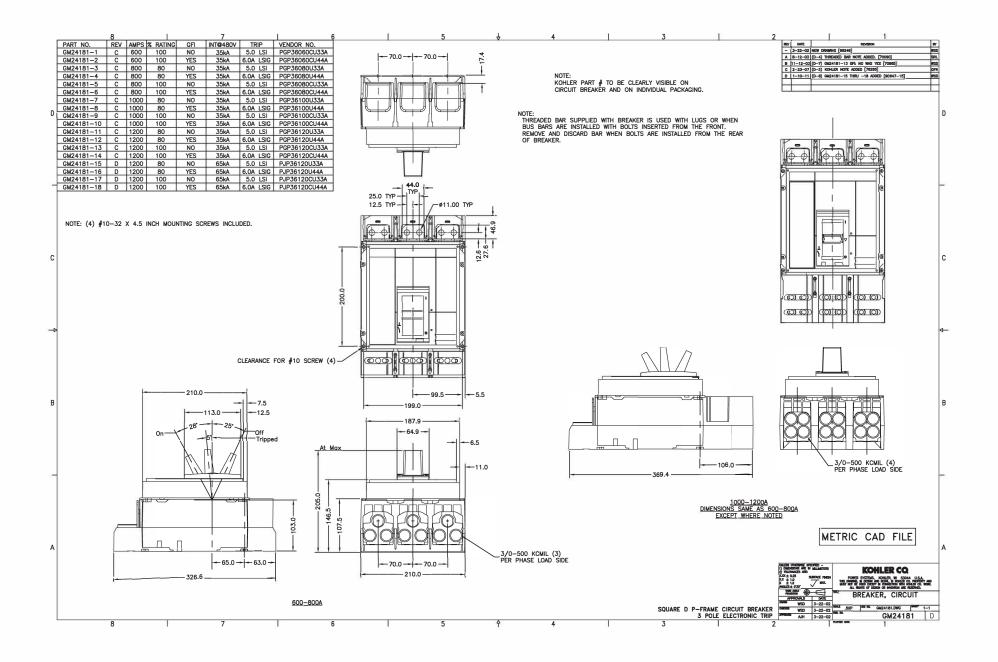


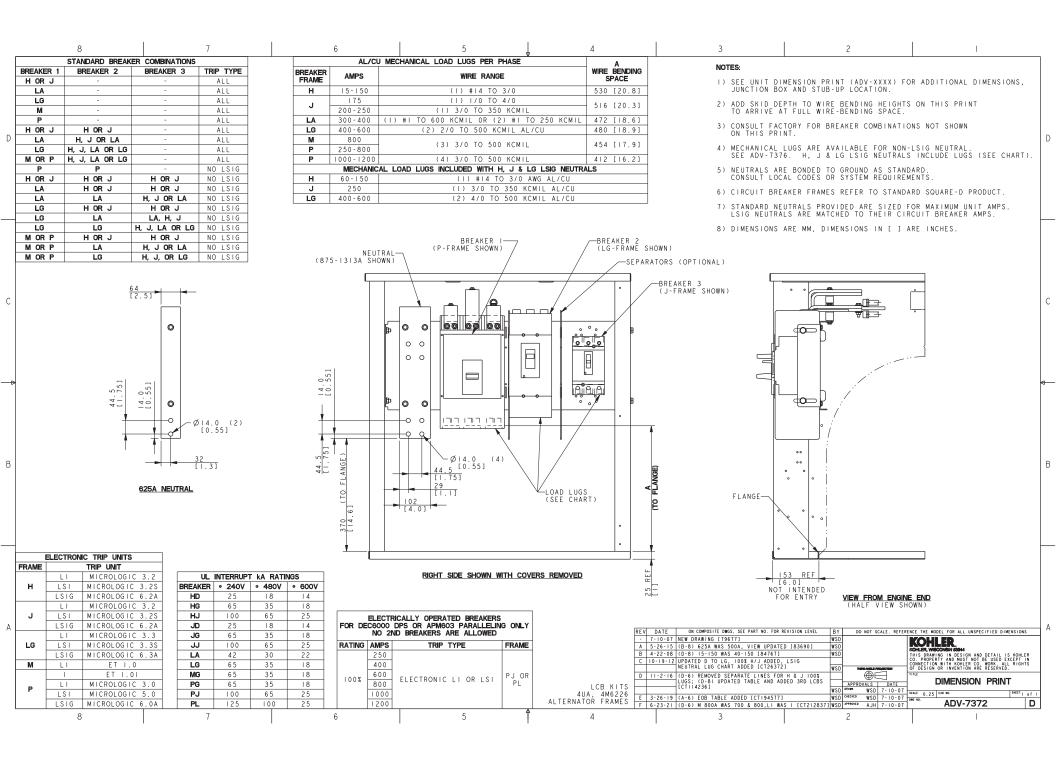





Miscellaneous







Warranty

Stationary Standby and Prime Power Industrial Generator Set One-Year or Two Thousand (2000)-Hour Limited Warranty

Your Kohler product has been manufactured and inspected with care by experienced craftsmen. If you are the original end user, Kohler Co. warrants, for the period indicated below, each product to be free from defects in materials and workmanship. In the event of a defect in materials or workmanship, Kohler Co. will repair, replace, or make appropriate adjustment at Kohler Co.'s option if the product, upon Kohler Co.'s inspection, is found to be properly installed, maintained, and operated in accordance with Kohler Co.'s instruction manuals. A Kohler distributor, dealer, or authorized service representative must perform startup.

Kohler Product

Stationary Standby Generator Set & Accessories

Stationary Prime Power Generator Set & Accessories

Warranty Coverage

One (1) year from registered startup or two thousand (2000) hours (whichever occurs first). In any event, the warranty period will expire not later than thirty (30) months from the date of shipment from Kohler Co.'s factory.

One (1) year from registered startup or two thousand (2000) hours (whichever occurs first). In any event, the warranty period will expire not later than thirty (30) months from the date of shipment from Kohler Co.'s factory.

The following will **not** be covered by the warranty:

- Normal wear, routine tuneups, tuneup parts, adjustments, and periodic service.
- Damage, including but not limited to damage caused by accidents, improper installation or handling, faulty repairs not performed by an authorized Kohler service representative, improper storage, or acts of God.
- Damage caused by operation at speeds, or with fuel, loads, conditions, modifications or installation contrary to published specifications.
- 4. Damage caused by negligent maintenance such as:
 - Failure to provide the specified type and sufficient quantity of lubricating oil.
 - b. Failure to keep the air intake and cooling fin areas clean.
 - c. Failure to service the air cleaner.
 - d. Failure to provide sufficient coolant and/or cooling air.
 - e. Failure to perform scheduled maintenance as prescribed in supplied manuals.
 - f. Failure to regularly exercise the generator set under load (stationary applications only).
- 5. Original installation charges and startup costs.
- 6. Starting batteries and the following related expenses:
 - a. Labor charges related to battery service.
 - b. Travel expenses related to battery service.
- 7. Additional expenses for repairs performed after normal business hours, i.e. overtime or holiday labor rates.

- 8. Rental of equipment during the performance of warranty renairs
- Removal and replacement of non-Kohler-supplied options and equipment.
- Non-Kohler replacement parts. Replacement of a failed Kohler part with a non-Kohler part voids the warranty on that part.
- 11. Radiators replaced rather than repaired.
- 12. Fuel injection pumps not repaired by an authorized Kohler service representative.
- Non-Kohler-authorized repair shop labor without prior approval from Kohler Co. Warranty Department.
- 14. Engine fluids such as fuel, oil, or coolant/antifreeze.
- 15. Shop supplies such as adhesives, cleaning solvents, and rags.
- Expenses incurred investigating performance complaints unless the problem is caused by defective Kohler materials or workmanship.
- Maintenance items such as fuses, lamps, filters, spark plugs, loose or leaking clamps, and adjustments.
- 18. Travel time and mileage exceeding 300 miles round trip.

To obtain warranty service, call 1-800-544-2444 for your nearest authorized Kohler service representative or write Kohler Co., Service Department, MS072, Kohler, WI 53044 USA.

KOHLER CO. SHALL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, AND/OR CONSEQUENTIAL DAMAGES OF ANY KIND including, but not limited to, incidental and/or consequential labor costs, installation charges, telephone charges, or transportation charges in connection with the replacement or repair of defective parts.

This is our exclusive written warranty. We make no other express warranty nor is anyone authorized to make any on our behalf.

ANY IMPLIED OR STATUTORY WARRANTY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS EXPRESSLY LIMITED TO THE DURATION OF THIS WARRANTY. Some states do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of incidental and/or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

KOHLER CO., Kohler, Wisconsin 53044 Phone 920-457-4441, Fax 920-459-1646 For the nearest sales/service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

TP-5374 12/15f

Stationary Standby Industrial Generator Set Extended Five-Year or Three Thousand (3000)-Hour Comprehensive Limited Warranty

Your Kohler product has been manufactured and inspected with care by experienced craftsmen. If you are the original end user, Kohler Co. warrants, for the period indicated below, each product to be free from defects in materials and workmanship. In the event of a defect in materials or workmanship, Kohler Co. will repair, replace, or make appropriate adjustment at Kohler Co.'s option if the product, upon Kohler Co.'s inspection, is found to be properly installed, maintained, and operated in accordance with Kohler Co.'s instruction manuals. A Kohler distributor, dealer, or authorized service representative must perform startup.

Kohler Product

Warranty Coverage

Stationary Standby Generator Set & Accessories

Five (5) years from registered startup or three thousand (3000) hours (whichever occurs first).

This warranty is effective only upon Kohler Co.'s receipt of an extended warranty registration form and warranty fee within one year of registered startup. The comprehensive limited warranty start date is determined by the standard limited warranty requirements and runs concurrent with the standard limited warranty during the first year. To receive extended comprehensive limited warranty coverage, the provisions of the standard limited warranty registration must be met.

The following will **not** be covered by the warranty:

- Normal wear, routine tuneups, tuneup parts, adjustments, and periodic service.
- Damage, including but not limited to damage caused by accidents, improper installation or handling, faulty repairs not performed by an authorized Kohler service representative, improper storage, or acts of God.
- Damage caused by operation at speeds, or with fuel, loads, conditions, modifications or installation contrary to published specifications.
- 4. Damage caused by negligent maintenance such as:
 - Failure to provide the specified type and sufficient quantity of lubricating oil.
 - b. Failure to keep the air intake and cooling fin areas clean.
 - c. Failure to service the air cleaner.
 - d. Failure to provide sufficient coolant and/or cooling air.
 - e. Failure to perform scheduled maintenance as prescribed in supplied manuals.
 - f. Failure to regularly exercise the generator set under load (stationary applications only).
- 5. Original installation charges and startup costs.
- 6. Starting batteries and the following related expenses:
 - a. Labor charges related to battery service.
- b. Travel expenses related to battery service.
- Engine coolant heaters, heater controls, and circulating pumps after the first year of the warranty period.

- Additional expenses for repairs performed after normal business hours, i.e. overtime or holiday labor rates.
- Rental of equipment during the performance of warranty repairs.
- Removal and replacement of non-Kohler-supplied options and equipment.
- Non-Kohler replacement parts. Replacement of a failed Kohler part with a non-Kohler part voids the warranty on that part.
- 12. Radiators replaced rather than repaired.
- 13. Fuel injection pumps not repaired by an authorized Kohler service representative.
- Non-Kohler-authorized repair shop labor without prior approval from Kohler Co. Warranty Department.
- 15. Engine fluids such as fuel, oil, or coolant/antifreeze.
- Shop supplies such as adhesives, cleaning solvents, and rags.
- Expenses incurred investigating performance complaints unless the problem is caused by defective Kohler materials or workmanship.
- 18. Maintenance items such as fuses, lamps, filters, spark plugs, loose or leaking clamps, and adjustments.
- 19. Travel time and mileage exceeding 300 miles round trip.

To obtain warranty service, call 1-800-544-2444 for your nearest authorized Kohler service representative or write Kohler Co., Service Department, MS072, Kohler, WI 53044 USA.

KOHLER CO. SHALL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, AND/OR CONSEQUENTIAL DAMAGES OF ANY KIND including, but not limited to, incidental and/or consequential labor costs, installation charges, telephone charges, or transportation charges in connection with the replacement or repair of defective parts.

This is our exclusive written warranty. We make no other express warranty nor is anyone authorized to make any on our behalf.

ANY IMPLIED OR STATUTORY WARRANTY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS EXPRESSLY LIMITED TO THE DURATION OF THIS WARRANTY. Some states do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of incidental and/or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

KOHLER CO., Kohler, Wisconsin 53044 Phone 920-457-4441, Fax 920-459-1646 For the nearest sales/service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

TP-5561 8/16f

Certification

Certificate of Registration

QUALITY MANAGEMENT SYSTEM - ISO 9001:2015

This is to certify that: Kohler Power Systems

N7650 Lakeshore Road

Sheboygan Wisconsin 53083 USA

Holds Certificate No: FM 727336

and operates a Quality Management System which complies with the requirements of ISO 9001:2015 for the following scope:

Design, manufacture, and distributor support for electrical generators, alternators, fuel tanks, automatic transfer switches and switchgear.

For and on behalf of BSI:

Carlos Pitanga, Chief Operating Officer Assurance – Americas

Original Registration Date: 1995-02-28 Effective Date: 2021-11-07
Latest Revision Date: 2021-10-29 Expiry Date: 2024-11-06

Page: 1 of 2

...making excellence a habit."

Certificate No: FM 727336

Location	Registered Activities
Kohler Power Systems - GK 900 Highland Drive Bldg 604 Kohler Wisconsin 53004 USA	Manufacture of leads and harness, automatic transfer switches and switchgear. Distribution of generator sets.
Kohler Power Systems N7650 Lakeshore Road Sheboygan Wisconsin 53083 USA	Design, manufacture, and distributor support for electrical generators, automatic transfer switches and switchgear.
Kohler Power Systems 300 N Dekora Woods Blvd Saukville Wisconsin 53080 USA	Manufacture of fuel tanks, skids, fabricated components and generators.
Kohler Power Systems Muth Warehouse 2821 Muth Court Sheboygan Wisconsin 53083 USA	The distribution of generator sets.
Kohler Power Systems KWIP Warehouse 4327 County EE Sheboygan Wisconsin 53081 USA	Receiving, sequencing and warehousing of generator components.

Original Registration Date: 1995-02-28 Effective Date: 2021-11-07 Latest Revision Date: 2021-10-29 Expiry Date: 2024-11-06

Page: 2 of 2

PROTOTYPE TEST REPORT

Models Covered: 230, 250, 275REOZJE

Model Tested: **275REOZJE**Cooling System Tested: **50C**

Alternator Tested: **4UA10** Engine Tested: **6090HF484** Voltage Tested: **208V**

GENSET

Maximum power test to assure that the prime mover and alternator have sufficient capacity to operate within specifications.

Meets Rated Load

Steady-state load test to ensure voltage stability meets or exceeds ISO8528-5 requirements and to verify compliance with steady state speed control specifications.

± 0.25 % Frequency Band ± 0.50 % Voltage Deviation

Transient load tests per NEMA MG1-32.18, and ISO 8528 to verify specifications of transient voltage regulation, voltage dip, voltage overshoot, recovery voltage, and recovery time. Values shown for model tested above. Please contact factory for additional details.

Full Load Acceptance Full Load Rejection
--

43.7 % Voltage Dip
2.90 Seconds of Recovery Time
26.5 % Frequency Dip
3.40 Seconds of Recovery Time
4.30 % Frequency Overshoot
3.40 Seconds of Recovery Time
0.50 Seconds of Recovery Time

G2 ISO8528-5 Class (G1, G2, G3)

NFPA 110 one step testing to determine the amount of time required for the generator set to reach 90% voltage and frequency to allow the ATS to transfer.

Complies with NFPA 110 Type 10

Vibrational analysis to verify that generator vibrations are within acceptable limits per ISO 8528-9. **Complies**

Torsional analysis data to verify torsional effects are not detrimental and that the generator set will provide dependable service as specified.

Complies

Generator set cooling and air flow tests to verify maximum operating ambient temperature. (Cooling system test results are available on TIB-118)

Acoustical noise intensity and sound attenuation effects tests (Acoustical noise results are available on TIB-114 &115)

Exhaust Back Pressure test completed to demonstrate within engine limitation (Exhaust back pressure test results are available on TIB-119)

PROTOTYPE TEST REPORT

Models Covered: 230, 250, 275REOZJE

Model Tested: **275REOZJE**Cooling System Tested: **50C**

Alternator Tested: **4UA10**Engine Tested: **6090HF484**Voltage Tested: **208V**

ALTERNATOR

Alternator temperature rise test per NEMA MG1-32.6. Standby and prime ratings of the alternator are established during this test.

Alternator overload test per NEMA MG1-32.8. Motor starting tests per NEMA MG1-32.18.5 to evaluate capabilities of generator, exciter, and regulator system.

Three-phase symmetrical short-circuit test per NEMA MG1-32.13 to demonstrate short circuit performance, mechanical integrity, ability to sustain short-circuit current.

Harmonic analysis, voltage waveform deviation per NEMA MG1-32.10 to confirm that the generator set is producing clean voltage within acceptable limits.

(Alternator detailed test results are available on TIB-102)

Kohler Standby/Prime Generator Set Test Program

Testing is an integral part of quality assurance. In keeping with our uncompromising commitment to quality, safety, and reliability, every Kohler Standby/Prime power generator set undergoes an extensive series of prototype and production testing.

Prototype Testing

Prototype testing includes the potentially destructive tests necessary to verify design, proper function of protective devices and safety features, and reliability expectations. Kohler's prototype testing includes the following:

- Alternator temperature rise test per NEMA MG1-32.6. Standby and prime ratings of the alternator are established during this test.
- Maximum power test to assure that the prime mover and alternator have sufficient capacity to operate within specifications.
- Alternator overload test per NEMA MG1-32.8.
- Steady-state load test to ensure voltage regulation meets or exceeds ANSI C84.1, NEMA MG1-32.17 requirements and to verify compliance with steadystate speed control specifications.
- Transient test to verify speed controls meets or exceeds specifications.
- Transient load tests per NEMA MG1-32.18, and ISO 8528 to verify specifications of transient voltage regulation, voltage dip, voltage overshoot, recovery voltage, and recovery time.
- Motor starting tests per NEMA MG1-32.18.5 to evaluate capabilities of generator, exciter, and regulator system.
- Three-phase symmetrical short-circuit test per NEMA MG1-32.13 to demonstrate short circuit performance, mechanical integrity, ability to sustain short-circuit current.
- Harmonic analysis, voltage waveform deviation per NEMA MG1-32.10 to confirm that the generator set is producing clean voltage within acceptable limits.

- Generator set cooling and air flow tests to verify maximum operating ambient temperature.
- Reliability tests to demonstrate product durability, followed by root cause analysis of discovered failures and defects. Corrective action is taken to improve the design, workmanship, or components.
- Acoustical noise intensity and sound attenuation effects tests.

Production Testing

In production, Kohler Standby/Prime generator sets are built to the stringent standards established by the prototype program. Every Kohler generator set is fully tested prior to leaving the factory. Production testing includes the following:

- Stator and exciter winding high-potential test on all generators. Surge transient tests on stators for generators 180 kW or larger. Continuity and balance tests on all rotors.
- One-step, full-load pickup tests to verify that the performance of each generator set, regulator, and governor meets published specifications.
- Regulation and stability of voltage and frequency are tested and verified at no load, 1/4 load, 1/2 load, 3/4 load, and full-rated load.
- Voltage, amperage, frequency and power output ratings verified by full-load test.
- The proper operation of controller logic circuitry, prealarm warnings, and shutdown functions is tested and verified.
- Any defect or variation from specification discovered during testing is corrected and retested prior to approval for shipment to the customer.

Torsional analysis data, to verify torsional effects are not detrimental and that the generator set will provide dependable service as specified, is available upon request.

Kohler offers other testing at the customer's request at an additional charge. These optional tests include power factor testing, customized load testing for specific application, witness testing, and a broad range of MIL-STD-705c testing. A certified test report is also available at an additional charge.

KOHLER CO. Kohler, Wisconsin 53044 Phone 920-565-3381, Fax 920-459-1646 For the nearest sales/service outlet in the US and Canada, phone 1-800-544-2444 KohlerPowerSystemscom

PreStartup Checklist

Generator Set/Transfer Switch Installation Checklist

This document has generic content and some items may not apply to some applications. Check only the items that apply to the specific application. Read and understand all of the safety precautions found in the Operation and Installation Manuals. Make the following installation checks before performing the Startup Checklist.

Note: Use this form as a general guide, along with any applicable codes or standards. Comply with all applicable codes and standards. Improper installation voids the warranty.

Equipment Room or Weather Housing		1	oes Not				
Does Not			Yes A			le though an authorist line condensate twen with a duain	
Yes Apply		Is the equipment installed in a fire-resistant room	الل	Ц	25.	Is there an exhaust line condensate trap with a drain installed?	
	٠.	(made of non-combustible material) or in an outdoor weather housing?	_			Is the specified silencer installed and are the hanger and mounting hardware tightened?	
		Is there adequate clearance between the engine and floor for service maintenance?			27.	Is a heat-isolating thimble(s) installed at points where exhaust lines pass through combustible wall(s) or partition(s)?	
	3.	Is there emergency lighting available at the equipment room or weather housing?			28.	Is the exhaust line free of excessive bends and restrictions? Is the backpressure within	
	4.	Is there adequate heating for the equipment room or outdoor weather housing?		_	00	specifications?	
	5.	Is the equipment room clean with all materials not related to the emergency power supply system				Is the exhaust line installed with a downward pitch toward the outside of the building? Is the exhaust line protected from entry by rain,	
	6.	removed? Is the equipment room protected with a fire	_			snow, and animals?	
		protection system?		_	31.	Does the exhaust system outlet location prevent entry of exhaust gases into buildings or structures?	
Engine		d Mounting			32.	Are individuals protected from exposure to high	
		Is the mounting surface(s) properly constructed and leveled?	_			temperature exhaust parts and are hot parts safety decals present?	
	8.	Is the mounting surface made from non-combustible material?	AC	Ele	ectri	cal System	
	9.	Was the generator-to-engine alignment performed after attaching the skid to the mounting base? Generator sets with two-bearing generators require			33.	Does the nameplate voltage/frequency of the generator set and transfer switch match normal/utility source ratings?	
		alignment.			34.	Do the generator set load conductors have adequate	
Lubric						ampacity and are they correctly connected to the circuit breakers and/or the emergency side of the	
		Is the engine crankcase filled with the specified oil?		_	0E	transfer switch?	
	_	nd Ventilation		_	3 5.	Are the load conductors, engine starting cables, battery charger cables, and remote annunciator	
	11.	Is the cooling system filled with the manufacturer's specified coolant/antifreeze and purged of air?			36	leads installed in separate conduits? Is the battery charger AC circuit connected to the	
	12.	Is there adequate inlet and outlet air flow (electric		_	00.	corresponding voltage?	
		louvers adjusted and ventilation fan motor(s) connected to the corresponding voltage)?	Trai	nsf	er S	witch, Remote Control System, Accessories	
	13.	Is the radiator duct properly sized and connected to the air vent or louver?			37.	Is the transfer switch mechanism free of binding? Note: Disconnect all AC sources and operate the transfer switch manually.	
	14.	Are flexible sections installed in the cooling water lines?		П	38.	Are the transfer switch AC conductors correctly	
Fuel				_		connected? Verify lead designations using the appropriate wiring diagrams.	
		Is there an adequate/dedicated fuel supply?			39.	Is all other wiring connected, as required?	
		Are the fuel filters installed?	Bat	teri	ies a	and DC Electrical System	
		Are the fuel tanks and piping installed in accordance with applicable codes and standards?			40.	Does the battery(ies) have the specified CCA rating and voltage?	
	18.	Is there adequate fuel transfer tank pump lift capacity and is the pump motor connected to the corresponding voltage?			41.	Is the battery(ies) filled with electrolyte and connected to the battery charger?	
	19.	Is the fuel transfer tank pump connected to the emergency power source?			42.	Are the engine starting cables connected to the battery(ies)?	
	20.	Are flexible fuel lines installed between the engine fuel inlet and fuel piping?			43.	Do the engine starting cables have adequate length and gauge?	
	21.	Is the specified gas pressure available at the fuel regulator inlet?			44.	Is the battery(ies) installed with adequate air ventilation?	
	22.	Does the gas solenoid valve function?			45.	Are the ends of all spark plug wires properly seated onto the coil/distributor and the spark plug?	
	23.	Are the manually operated fuel and cooling water valves installed allowing manual operation or bypass	Spe	ecia	ıl Re	equirements	
		of the solenoid valves?			46.	Is the earthquake protection adequate for the	
Exhau	st		_ ,	_	4-	equipment and support systems?	
	24.	Is the exhaust line sized per guidelines and does it	L l	┙	47.	Is the equipment protected from lightning damage?	
		have flexible connector(s)? Is the flexible					

connector(s) straight?

Generator Set/Transfer Switch Startup Checklist

This document has generic content and some items may not apply to some applications. Check only the items that apply to the specific application. Read and understand all of the safety precautions found in the Operation and Installation Manuals. Complete the Installation Checklist before performing the initial startup checks. Refer to Service Bulletin 616 for Warranty Startup Procedure Requirements regarding generator set models with ECM-controlled engines.

Doe No Yes App	t		Yes	Does Not Apply		
П П		Verify that the engine is filled with oil and the cooling system is filled with coolant/antifreeze.		Apply		Close the normal source circuit breaker or replace fuses to the transfer switch.
		Prime the fuel system. Open all water and fuel valves. Temporarily remove the radiator cap to eliminate air in the cooling system.			30.	Check the normal source voltage, frequency, and phase sequence on three-phase models. The normal source must match the load.
	1	Replace radiator cap in step 21.			31.	Open the normal source circuit breaker or remove fuses to the transfer switch.
	4.	Place the generator set master switch in the OFF/RESET position. Observe Not-in-Auto lamp and			32.	Manually transfer the load to the normal source.
	5.	alarm, if equipped, on the controller. Press the lamp test, if equipped on controller. Do all the alarm lamps on the panel illuminate?			33.	Close the generator set main line circuit breakers, close the safeguard breaker, and/or replace the fuses connected to the transfer switch.
	6.	Open the main line circuit breakers, open the safeguard breaker, and/or remove fuses connected to the			34.	Place the generator set master switch in the RUN position.
	7.	generator set output leads. Turn down the speed control (electronic governor) or speed screw (mechanical governor).*			35.	Check the generator set voltage, frequency, and phase sequence on three-phase models. The generator set must match normal source and load.
	8.	Verify the presence of lube oil in the turbocharger, if equipped. See the engine and/or generator set			36.	Place the generator set master switch in the OFF/RESET position.
	9.	operation manual. Place the generator set master switch in the RUN position. Allow the engine to start and run for several			37.	Open the generator set main line circuit breakers, open the safeguard breaker, and/or remove the fuses connected to the transfer switch.
		seconds. Verify that the day tank, if equipped, is energized.			38.	Reconnect the power switching device and logic controller wire harness at the inline disconnect plug at the transfer switch.
	11.	Place the generator set master switch in the OFF/RESET position. Check for oil, coolant, and exhaust leaks.			39.	Close the normal source circuit breaker or replace fuses to the transfer switch. Place the generator set master
		Turn on the water/oil heaters and fuel lift pumps. Check the battery charger ammeter for battery charging indication.			40.	switch to the AUTO position. Close the generator set main line circuit breakers, close the safeguard breaker, and/or replace the fuses
	14.	Place the generator set master switch in the RUN position. Verify whether there is sufficient oil pressure. Check for oil, coolant, and exhaust leaks.			41.	connected to the transfer switch. Place the transfer switch in the TEST position (load test or open normal source circuit breaker). NOTE: Obtain
	15.	Close the safeguard circuit breaker. Adjust the engine speed to 50/60 Hz if equipped with an electronic governor or to 52.8/63 Hz if equipped with a mechanical				permission from the building authority before proceeding. This procedure tests transfer switch operation and connects building load to generator set power.
	16.	governor.* If the speed is unstable, adjust according to the			42.	Readjust frequency to 50 or 60 Hz with total building loads.*
	17.	appropriate engine and/or governor manual.* Adjust the AC output voltage to match the load voltage using the voltage adjusting control. See the generator				Verify that the current phase is balanced for three phase systems.
	18.	set/controller operation manual. Allow the engine to reach normal operating coolant			44.	Release the transfer switch test switch or close the normal circuit breaker. The transfer switch should retransfer to the normal source after appropriate time
	19.	temperature. Check the operating temperature on city water-cooled			45.	delay(s). Allow the generator set to run and shut down
	20.	models and adjust the thermostatic valve as necessary. Manually overspeed the engine to cause an engine				automatically after the appropriate cool down time delay(s).
		shutdown (68-70 Hz on 60 Hz models and 58-60 Hz on 50 Hz models). Place the generator set master switch in the OFF/RESET position.*		_		Set the plant exerciser to the customer's required exercise period, if equipped.
	21.	Check the coolant level, add coolant as necessary, and replace the radiator cap. Verify that all hose clamps are				Verify that all options on the transfer switch are adjusted and functional for the customer's requirements.
	22.	tight and secure. Place the generator set master switch in the RUN position.	Ц	Ш	40.	If possible, run the building loads on the generator set for several hours or perform the load bank test if required.
	23.	Verify the engine low oil pressure and high coolant temperature shutdowns.*			49.	Verify that all the wire connections from the generator set to the transfer switch and optional accessories are tight and secure.
	24.	Check the overcrank shutdown.*			50.	Verify that the customer has the appropriate
		Place the generator set master switch in the OFF/RESET position.				engine/generator set and transfer switch literature. Instruct the customer in the operation and maintenance of the power system.
	26.	Open the normal source circuit breaker or remove fuses to the transfer switch.			51.	Fill out the startup notification at this time and send the white copy to the Generator Warranty Dept. Include the warranty form if applicable.
	27.	Disconnect the power switching device and logic controller wire harness at the inline disconnect plug at the transfer switch.				
	28.	Manually transfer the load to the emergency source.				

^{*} Some models with an Engine Electronic Control Module (ECM) may limit or prohibit adjusting the engine speed or testing shutdowns. Refer to appropriate documentation available from the manufacturer.